NUMERICAL MODELING OF ICE-STRUCTURE INTERACTION

Annual Progress Report No. 1

September 28, 1984 - September 30, 1985

Research Supported By
MINERALS MANAGEMENT SERVICE
United States Department of the Interior

Contract No. 14-12-0001-30219
Duration of Contract: 09/28/1984 - 09/30/1987
Contract Amount: $110,000
COTR: Mr. Charles E. Smith

Prepared By
Prof. S. Shyam Sunder - Principal Investigator
Prof. Jerome J. Connor - Co~Principal Investigator

Department of Civil Engineering
MASSACHUSETTS INSTITUTE OF TECHNOLOGY
Room 1-274
Cambridge, Massachusetts 02139

September 30, 1985

The views and conclusions contained in this document are those of the authors
and should not be interpreted as necessarily representing the official

policies, either expressed or implied, of the United States Government.



TABLE OF CONTENTS
PAGE

COVER PAGE .ttt it teeenneoenoascncatessonsasasonossnaneenceceenna 1
TABLE OF CON T EN TS e s e ettt eesenneseesessonoocsanesonensssesnsncsnnnnses 2

1. INTRODUCTION. ¢4t s eeconscscoauenoeatoecseneoaasansoseoennnnonnssas 3
OBJECTIVE OF PROPOSED WORK.:ooustosonnenoacosoassnsasonenonsaa 3
BACKGROUND . st tttttennenneesetossansesnasaannanensesonneoans 3

ST AFFING. et s teerernaoenessascnsscecossoenssnsnssasesscseannsns 6
2. SUMMARY OF RESEARCH ACTIVITIES.................................... 7

3. NOTABLE NON-TECHNICAL ACTIVITIES .t tteennesenesecocsncannnnannaanes 17
PUBLISHED OR SUBMITTED PAPERS .t eevuenennsrssssssosnecanannssna 17
SEMINARS AND TALKS.:ueuerreensoncaooocconnseneessosaneeanness 17
PROFESSIONAL ACTIVITIES. ettt tseeseeroasoscsssesssannonnensas 18

EXPERIMENTAL DATA FROM U.S. ARMY CRREL.v:vevronocccocncosense 20

4. BUDGET..-......~.................................................. 21



1. INTRODUCTION

OBJECTIVE OF PROPOSED WORK

The objective of this project is to systematically investigate using
numerical models the mechanics of deformation and progressive failure in ice
for the purpose of predicting global forces and local pressures on offshore
structures proposed for deployment in the Arctic. The focus is on ice
sheets interécting with rigid cylindrical indenters. The project involves
the following three major areas of study:

l. Development of constitutive models to characterize the mechanical

behavior of sea ice.

2. Development of finite element methods of analysis to account for

the simultaneous occurrence of viscous (rate dependent) anq frac;ure
behavior in ice, and time varying contact between ice and structure.

3. Numerical solution of ice-structure interaction processes for

selected ice features and structural configurations to predict

global forces and local pressures.

BACKGROUND

As much as 30-40 percent of the U.S. undiscovered hydrocarbon
recoverable reserves, comparable in magnitude to those of the Persian Gulf,
are estimated to lie in the Arctic. The extraction of these resources in an
economical and safe manner poses many technical challenges to offshore
engineering. At the root of théée problems is the seve;e environment
created by perennial ice features that impart global forces and local

pressures on structures which are several times greater than those from waves



in non-Arctic environments. Typically, two levels of ice loading are
considered for design purposes. Global ice loads govern the overall
structural geometry and dimensions as well as the foundation design, while
local ice pressures are likely to dictate wall thicknesses and local
framing, and may well govern structural cost.

Most of the emphasis in research has been on predicting global forces.
"Only during recent years, as the focus changed from overall feasibility to
preliminary and detailed design, has the importance of local pressures
emerged. It is widely recognized that significant uncertainties exist in
the ice load models in use today and that some design loads may be
overestimated by an order of magntidue. Research is necessary to quantify
the uncertainties in ice loads and to éevelop improved load prediction
models for the safe and economical design of structures.

Uncertainties in existing ice load models arise primarily from five
sources:

® Incomplete modeling of the mechanical behavior of ice,

including temperature and fracture effects.

® Empiricism in existing thecretical models resulting from the

use of approximate analysis methods.

® Inadequate modeling of the contact forces at the ice-structure

interface.

® Neglecting the effect of scale/size on material strength.

® Not accounting for the finiteness of environmental and other

forces driving the ice features.

In order to qguantify these uncertainties and to better predict global

and local ice loads, numerical models are necessary for computer simulation



of ice-structure iﬁteraction processes. 1In contrast to analytical methods,
such models can realistically simulate the interaction accounting‘for
spatial-temporal variébility in the mechanical behavior of ice and for
multiple modes of failure in ice.
The complexity of sea ice behavior is due mainly to:
L Strohg dependence on rate of loading, which is spatially and
temporally variable in ice features.
® Simultaneous occurrence of ductile, strain-softening, and brittle
modes of deformation.
® Pressure sensitivity leading to different strengths in compression
and tension (at moderate-to-high rates of loading) and‘to melting
point depression.
® Material anisotropy leading to strength variation by a factor
of three.
® Strong dependence on temperature, varying in first year ice from
melting point at the water interface to perhaps -50°F at the air
interface.
® Strong dependence on internal Structure of ice (grain size, fabric,
brine volume, salinity, porosity), which is spatially varying
particularly in multi-year ice features.
A key aspect in the development of constitutive models is the need for
accurate and consistent experimental data on ice, especially to characterize
its behavior relating to tensile loading, cyclic loading, multiaxial
loading, nucleation and interaction of cracks, material anisotropy, thermal
and structural gradients, and fracture toughness. Currently available data

is in many cases sufficient to postulate approximate constitutive models.



Numerical simulations can help to establish the importance of more extensive
experimentation in gquantifying ice-structure interaction processes.
Finite element metﬁads of analysis for simulating ice-structure
interaction processes are affected by the following research concerns:
@ Rate dependent material behavior with negligible elastic
deformation.
e Initiation and propagation of cracks due to fracture.
® Simultaneous occurrence of rate dependent and fracture behavior.
e Adfreeze bond and friction at ice-structure interface.
° Time-varying contact between ice and stucture and between
fractured ice features.

o Strain-softening of ice.

STAFFING

Dr. S. Shyam Sunder, Winslow Associate Professor of Civil Engineering,
is Principal Investigator for this project while Dr. Jerome J. Connor,
Professor of Civil Engineering, is Co-Principal Investigator. In addition,
two full-time graduate Research Assistants are participating in this
research. They are Mr. S-K Ting, a doctoral student with considerable
experience in concrete testing and dynamic behavior of offshore structures
(¢/1/84 - 8/31/85); Mr. F.S. Chehayeb, a doctoral student whose background
is in numerical analysis and finite element methods (9/1/84 -5/31/85); and
Mr. Jaideep Ganguly, a master's student with expertise in computational

mechanics (6/1/85 - 8/31/85).



2. SUMMARY OF RESEARCH ACTIVITIES

The principal technical developments during this reporting period have
been: .
(1) The study of sea ice indentation in the creeping mode of
deformation.
(2) Initiation of research to study sea ice indentation accounting for
fracture behavior.

Specific accomplishments and current research directions are discussed

below.

SEA ICE INDENTATION IN THE CREEPING MODE

A study of ice indentation in the creeping mode is important for two
reasons: (a) creep is the predominant mode of deformation for artificial
islands in the Arctic nearshore region during "breakout" and/or steady
indentation conditions occurring in the winter, and (b) stresses, strains,
and strainrates within the continuum resulting from creep are necessary to
predict the initiation and propagation of cracks when viscous effects
influence fracture.

Global and local pressures generated during sea ice indentation in the
creeping mode are being studied, accounting for the spatial variation of
strainrates. Two methods of analysis are being considered: (a) approximate
methods, i.e., upper-bound method and strain path method, and (b) "exact"
method based on the finite element method. 1In both cases, a two-dimensional
idealization of the indentation process is considered. 1In order to provide
continuity with prévious work, the isotropic, incompressible three-
dimensional extension of the uniaxial power-law creep model has been

extensively studied. Pressures predicted with this model are being compared



with those from previously published formulas, e.g., API Bul. 2N, Ponter et
al., and Bruen & Vivatrat. 1In addition, ice pressures have been obtained
with the approximate methods for a new uniaxial model that accounts for the
stress-strain-strainrate behavior of sea ice, including its strain-softening
behavior. The current emphasis is on the development of an orthotropic
power law creep model for sea ice and its implementation within a finite
element analysis fraﬁework to quantify the effect of material anisotropy on
ice loads.

The key difference in the two approximate methods of analysis is that
point stresses within the continuum can be obtained with the strain path
method. As a result, local stresses at the ice-structure interface can be
estimated, unlike the upper bound method which only yields the global pre-
ssure. However, both methods rely on an adeguate specificiation of the
velocity field in the ice sheet. This is obtained through a combination of
theoretical modeling based on fluid mechanics and field ice movement survey
data from an artificial island in the Beaufort Sea. In particular, two
theoretical kinematic models are considered: one resulting from the super-
position of a point source and a uniform flow (Kinematic Model a) that has
been proposed by Bruen & Vivatrat; and the other resulting from the super-
position of a doublet and a uniform flow (Kinematic Model B).

The results of the approximate methods indicate that:

(a) Kinematic Model B better models the ice movement survey data

used here than Kinemagic Model A.
(k) In the creeping mode of ice deformation, local ice pressures
are of the same order of magnitude as the global pressures,
{c) Under the same conditions, Kinematic Model B, the API model, and

the Ponter et al. model predict similar global pressures.



(d) The variation in global pressures for different power-law

model parameters (Wang, Sanderson, Ting & Shyam Sunder) is

on the orde& of 30%.
A key finding of the work is that for rate-dependent material models
describing sea ice behavior, interface adfreeze and friction stresses can
significantly influence both local and global ice pressures. The only
realistic way to study these effects is through numerical models based on
the finite element method of analysis.

This research has been summarized in a paper entitled "Sea Ice Inden-
tation Accounting for Strain-Rate Vvariation", published in the proceedings
of the ASCE Specialty Conference: ARCTIC '85 - Civil Engineering in the
Arctic Offshore held at San Francisco, CA, March 25-27, 1985 (Appendix A).

A finite element formulation for genéral viscoplastic behavior
including creep (nonlinear viscoelasticity) has been developed and
implemented in a computer code called DECNEC (Discrete Element Computational
NEtwork Controller). A new bi-level solution algorithm has been developed
for fast convergence in problems where permanent deformations dominate.
This algorithm is based on a secant type iteration on the global equations
of motion and a Newton-Raphson (tangent type) iteration, combined with an
implicit numerical time integrator, on the rate-dependent constitutive
relations at each integration point within an element. A post-processor,
originally written at the Lawrence Livermore Laboratory, can be used in
conjunction with the computer cgde to produce graphical displays. The
program has the ability to simulate a free or frictional contact between two
deformable bodies, i.e., no contact stresses due to adfreeze bond, by
defining the interface as a "slideline". The current implementation is a

two-dimensional version for plane stress problems. A four noded gquadri-
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lateral element is currently available. Although an eight-noded quadratic
element is often preferred (and may be included in the future), accurate
results can and have been obtained with the four-noded element using a finer
finite element mesh. An isotropic power-~law creep material model was
implemented first.

The accuracy of the computer code has been verified in two ways;
through the solution of simple test problems, and by comparing the
variability in predicted global pressures due to indenter diameter, material
model parameters, and ice sheet velocity with that predicted by approximate
methods of analysis. 1In both cases, the numerical solutions are accurate to
within spécified tolerances typically achievable in finite element
analyses.

Numerical simulations have been performed under plane stress conditions
to assess the influence of interface adfreeze and friction, material
constants for a multi-axial power law creep model, grounded rubble pile,
and ice sheet velocity on predicted global forces and local pressures. The
results have been compared with those based on approximate methods of
analysis. Stress, strainrate, and strain countours have been obtained in
addition to the distribution of interface pressurés.

The numerical simulations show that:

1. Global forces vary by a factor of 2.5 depending upon whether the
interface condition is fixed (infinite adfreeze bond strength),
roller, or free (no adfreeze bond strength or interface friction).
The fixed condition is about 1.3 times and the free condition about

0.5 times the roller condition.
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Finite element analysis predictions of global pressure differ from

a modified form of the upper bound solution for Kinematic Model B by
less than 10% for varying velocity, indenter diameter, and material
constants. The modification is necessary since the two-dimensional
nature of the kinematic models makes the approximate solutions

strictly apply to plane strain conditions, and not to the plane

stress condition of interest.

The ratio of maximum normal interface pressure to global pressure
approximately varies in the range 0.35-1.10 depending upon the
interface condition. It is 0.35 for the fixed condition, 0.55 for
the roller condition, and 1.10 for the free condition.

The maximum (peak) normal interface pressures vary by a factor of
1.26 depending upon the interface condition. The fixed condition
is about 0.83 times and the free condition about 1.04 times the
roller condition. The maximum interface shear stress for the fixed
condition is about 0.81 times the corresponding maximum normal
pressure. However, a different boundary value problem involving a
smaller contact area, as opposed to contact over half the perimeter
in the free condition, will lead to higher interface pressures.
Pressure—-area curves should be considered as providing the

maximum normal interface pressure for a given indenter area of
contact (form area), rather than the average integrated normal
pressure over a tribuEary loaded area for a structural component.
It is conservative to assume a uniform or rectangular distribution
of the local pressure over the indenter area of contact for

purposes of design.
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6. Tensile stresses, strains and strainrates occur almost all over the
ice sheet, and may be the key to explaining fracture behavior
during indentation. While biaxial compression and tension states
tend to occur for stress on the upstream and downstream sides,
respectively, the state of strain is almost always
compression-tension. The levels of tensile strain are often
sufficient to cause cracking even before steady state creep is
reached.

The possible effect of a grounded rubble pile or accreted ice foot on

ice pressures was assessed by defining an effective indenter equal to a
multiple (2.85) of the structural diameter. This resulted in a factor of
1.97 increase in global force. In the case of a grounded rubble pile, it
would be over conservative to consider that all this force is transmitted to
the foundation by the structure. On the other hand, the force transmitted
to the foundation by the structure would decrease by a factor of 4.14 if
both the structure and the grounded rubble pile could transmit a force pro-
portional to the contact area of each with the foundation. This may be
reasonable only if the rubble pile is consolidated and grounded fimly in the
foundation soil such as in the case of constructed ice packs. Further
research is necessary to quantify the level of force that can be directly
transmitted to the foundation by a grounded rubble pile.

The numerical simulations also showed that (i) even a factor of two
uncertainty in velocity will afgect ice pressures only by about 20-30%, and
(ii) uncertainties in material constants for an isotropic power law creep
model may yield ice pressures that vary by about 15-30%. However, improved
material models that include fracture and temperature effects in addition to

the transversely isotropic behavior of sheet ice can have a major influence
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on 1ice pressure predictions.

This research has been summarized in a paper entitled "Sea Ice
Indentation in the Créeping Mode", published in the proceedings of the
17th Annual Offshore Technology Conference, Houston, TX, May 6-9, 1985
(Appenidx B).

Sea ice, however, is not an isotropic material. Field observations have
shown that this type of ice, which is predominantly columnar, has two
sources of anisotropy: (a) the c-axis is oriented perpendicular to the axis
of crystal growth, and (b) the c-~axes of different crystals may show
preferred azimuthal orientation in the plane on which they lie. The
anisotropy of sea ice strongly influences the macromechanical behavior of
first year sheet ice, while its influence on the behavior of multi-year
floes, though less well studied, may be less. In first year sheet ice, the
first source of anisotropy leads to a ratio of vertical to horizontal stress
at constant strainrate varying from 2-5, while the second source of
anisotropy leads to stress ratios of 0.25-0.60 at a 45 degree angle to the
c-axis and 0.50-0.95 at a 90 degree angle.

Two theoretical models have been developed for predicting indentation
pressures assumihg the ice sheet to be transversely isotropic. They are: (1)
the upper and lower bound, plasticity based solution of Ralston, and (2) the
upper bound, power-law creep solution of Vivatrat and Chen. The first model
assumes the material behavior to be pressure sensitive while the second
formulation is pressure—insensigive. Ralston's model has been incorporated
in the API Bulletin 2N guidelines.

A general orthotropic elastic - power law model for sea ice has been
developed assuming pressure insensitivity. This model predicts very well the

plane strain uniaxial compression tests conducted by Frederking. Further,
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experimental data of Richter-Menge et al. on first-year sea ice and that of
Hausler on saline ice indicate that sea ice is only moderately pressure
sensitive in comparison with pure polycrystalline ice which is highly
pressure sensitive.

A finite element method of analysis has been developed for studying the
effect of sea ice anisotropy on indentation in the creeping mode. Numerical
simulations of ice-structure interaction for a rigid cylindrical indenter
under plane stress conditions and a tranversely isotropic version of the
above material model showed that:

l. Anisotropy, as represented by the vertical stress ratio varying
between 1 and 5, can cause global forces to increase by almost 15
percent depending upon whether the interface condition is fixed
(infinite adfreeze bond strength), roller, or free {(no adfreeze bond
strength or interface friction). The factor is 1.10 for the fixed
condition, 1.12 for the roller condition, and 1.13 for the free
condition.

2. Anisotropy can cause maximum (peak) normal interface pressures to
increase by almost 20 percent depending upon the interface
condition. The factor is 1.07 for the fixed condition, 1;16 for the
roller condition, and 1.19 for the free condition. The interface
shear stress for the fixed condition essentially remains unchanged.

3. Finite element predictions of global forces and local pressures
differ from a (approximgte) modified upper bound solution by less
than about 10 percent for varying velocity, indenter diameter, and
material constants.

4. Theoretical predictions of pressure area curves provide an excellent

match to measured local pressures.
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5. Anisotropy leads to an increase in the size of the
compression-compression and tension-tension states of stress on the
upstream and ‘downstream sides, respectively, of the indenter.

6. Anisotropy leads to decreasing strains for the roller and free
conditions but to almost no change for the fixed condition. This is
associated with the increase in lateral confinement near the
upstream and downstream tips of the indenter which in turn
significantly affects the behavior of transversely isotropic sea
ice. Lateral confinement effects are smaller for the fixed condition
since the influence of anisotropy is more evenly distributed over
the interface due to the presence of interface shear stresses.

The numerical simulations also showed that (i) even a factor of two
uncertainty in velocity will affect ice pressures only by about 20-30
percent, and (ii) the uncertainties in pressures resulting from variability
in the degree of anisotropy is approximately two or three times less
important than the variability in the power law constants in the reference
direction.

This research has been summarized in a paper entitled "Anisotropic Sea
Ice Indentation in the Creeping Mode" to be presented at the Fifth
International Symposium on Offshore Mechanics and Arctic Engineering, Tokyo,

Japan, April 13-17, 1986 (Appendix C).

SEA ICE IDENTATION ACCOUNTING FOR FRACTURE

Field observations of sea ice identation on offshore structures in the
Arctic show that ﬁracture processes are a major factor in ice-structure
interaction.

Fracture manifests itself in terms of tensile cracking and crushing in
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compression. Numerical simulations of ice-structure interaction processes
in the creeping mode of deformation have indicated that the ice sheet con-
sists of three regimes JOf principal stresses and strains; i.e., compression-
compression, compression-tension, and tension-tension. The latter two
regimes occupy a major fraction of the area of the continuum. Since ice is
weaker in tension than in compression once cracks occur, accounting for the
differing behavior of ice in tension may help to reduce (or limit) ice force
predictions significantly.

A constitutive model for sea ice, applicable to monotonic uniaxial
loading in both compression and tension, has been proposed and calibrated
with experimental data. The stress-strain-strainrate behavior of sea ice
has been modelled accounting for strain softening and for fracture which
manifests itself in terms of tensile cracking and crushing in compression.
The adequacy of the model has been demonstrated by comparison with
experimental data obtained under constant strainrate, creep, and constant
stressrate conditions. The model has been used to predict the occurrence of
first cracks in ice under uniaxial compressive loading. Tensile strains
occur under this loading condition as a result of the Poisson effect and/or
incompressibility condition. Once cracks occur, the material continues to
sustain compressive load but loses its ability to carry tensile loads in the
transverse direction if applied. This is a realistic assumption and has
been used often in modeling concrete behavior. A limiting tensile strain
criterion dependent on the instanééneous strainrate in tension has been used
to predict crack nucleation. The results for compressive creep compare very
well with the experimental data of Gold.

This research has been summarized in a paper entitled "Ductile to

Brittle Transition in Sea Ice Under Uniaxial Loading" presented at the 8th
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International Conference on Port and Ocean Engineering under Arctic
Conditions, Narssarssuaq, Greenland, September 7-14, 1985 (Appendix D).

There are many aspects of sea ice behavior which are essential for
numerically simulating rate-dependent fracture processes. A rate-sensitive
damage model for describing the continuum behavior of sea ice under variable
loading conditions has been developed for the purpose. The model, based on a
nonlinear generalization of the Maxwell differential formulation, is
characterized by its ability to (a) decompose the various recoverable and
irrecoverable components of strain, (b) represent continuously damaging or
strain-softening material behavior in the ductile to brittle transition
region, (c) capture the rate-dependent behavior of sea ice with
rate-independent model parameters, and (d) describe materially anisotropic
mechanical behavior. Further, the model shows strong dependency of the creep
and constant strainrate behavior. Calibration of the model is achieved with
several independent sets of data, particularly those for first-year sea ice.
The following specific conclusions can be drawn from this work:

1. The uniaxial model developed is described by 9 parameters. For
comparable models, i.e., those of Sinha and Michel, the number of
parameters is 8 and 10 réspectively. It must be recognized that
Sinha's model does not capture material damage while calibration of
Michel's model with experimental data is very limited.

2. All parameters of the model, i.e., 9 for the uniaxial model énd 5
for the orthotropic gener;lization, can be determined from
conventional tests conducted on ice. The experimental data base is
generally adequate to determine the model parameters. In particular,
normalization of the uniaxial strength data for salinity and

temperature is a useful way of including test results for pure
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polycrystalline ice in model calibration.

3. Material damage that can be described by the continuum model
proposed here is significant in the strainrate range of 2x10~4% g-1
to 1072 s~1, At higher strainrates the presence of microcracks
precludes a solely continuum description of ice behavior.

". According to the proposed model, an ideal creep test does not lead
to primary creep strains. However if the finite rise time required
to reach the nominal stress in a creep test is taken into account,
primary creep strains are simulated by the model. Experimental
evidence appears to support this conclusion.

5. The pressure-insensitive orthotropic model predicts very well the
plane strain uniaxial compression test results of Frederking.
Further, experimental data of Richter-Menge et al. on first-year sea
ice and that of Hausler on saline ice indicate that sea ice is only
moderately pressure sensitive in comparison with pure

polycrystalline ice which is highly pressure-sensitive.

This work has been summarized in a paper entitled "A Rate Sensitive
Damage Model for the Continuum Behavior of Sea Ice" in submission for
publication in the Cold Regions Science and Technology Journal (Appendix
E).

The quantification of fracture behavior requires two criteria, one for
initiation and the other for propagation. Fracture initiation can often be
well described by a stress or strain criterion. However, two alternative
approaches are availéble to describe fracture propagation: a tensile
limiting strain or strength criterion, and a fracture mechanics criterion.

In the case when ice is a locad bearing system, a fracture mechanics
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criterion for cracking is conservative. However, when ice features act as

load transmitting systems, a fracture mechanics approach may lead to

unconservative results.; To account for tensile cracking and compressive
fracture in ice and still be conservative in force and pressure predictions,
a rate—dependent limiting strain or stress criterion is preferable to the
fracture mechanics approach. The former is adopted in this project.

Several approaches are available to account for cracking in a finite
element framework. Two of the more common approaches are the discrete

cracking models which follow individual discrete cracks between elements and

the smeared cracking models which treat the gross {(smeared) effect of cracks

in an element. The latter approach has been preferred in finite element
analyses of concrete since it is computationally far more convenient, and
will be adopted in this project. An added advantage is that smeared crack
models can be extended easily to allow for an objective energy release rate
criterion for fracture propagation. The resulting theory, called the blunt
crack band theory, will require the development of an appropriate modifica-
tion to the rate-dependent limiting tensile stress fracture criterion.

A major research effort is being undertaken to (1) extend the plane
stress finite element analysis computer code to incorporate smeared cracking
models, and (2) implement the constitutive model in the program. The
influence of fracture on both global forces and local pressure will then be

quantified through numerical simulations.
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3. NOTABLE NON-TECHNICAL ACTIVITIES

PUBLISHED OR SUBMITTED PAPERS

1.

Ting, S-K., and Shyam Sunder,, S., "Sea Ice Indentation Accounting for
Strain-Rate Variation," Proceedings of the ASCE Specialty Conference:
ARCTIC '85 - Civil Engineering in the Arctic Offshore, San Francisco, CA,

March 75-27, 1985, pp. 931-941.

Chehayeb, F.S., Ting, S-K., Shyam Sunder, S., and Connor, J.J., "Sea Ice
Indentation in the Creeping Mode," Proceedings of the 17th Annual
Offshore Technology Conference, Houston, TX, May 6-9, 1985, OTC Paper

5056, pp. 329-341. Paper to be simultaneously reviewed for publication
in the Journal of Engineering Mechanics, ASCE.

Shyam Sunder, S., and Ting, S-K., "Ductile to Brittle Transition in Sea
Ice Under Uniaxial Loading," Proceedings of the 8th International
Conference on Port and Ocean Engineering Under Arctic Conditions,

Narssarssuaq, Greenland, September 6-13, 1085,

Shyam Sunder, S., Ganguly, J., and Ting, S-K., "Anisotropic Sea Ice
Indentation in the Creeping Mode," Proceedings of Sth International
Symposium on Offshore Mechanics and Arctic Engineering, Tokyo, Japan,

April 13-18, 1986. Accepted for publication subject to final review of
manuscript. Paper to be simultaneously reviewed for publication in the
Journal of Energy Resources Technology, ASME.

Ting, S-K., and Shyam Sunder, S., "A Rate-Sensitive Damage Model for the
Continuum Behavior of Sea Ice," Cold Regions Science and Technology, In
Submission, September 1985.

SEMINARS AND TALKS

1.

Both Professors S. Shyam Sunder and Jerome J. Connor participated in the
Workshop on Breaking Process of Ice Plates held at M.I.T. on November
1-2, 1984. The title of their presentations are listed below:
a. Professor S. Shyam Sunder: Sea Ice Indentation Accounting for
Strain-Rate Variation.n
b. Professor Jerome J. Connor: Numerical Simulation of the Creep
Mode in Ice-Structure Interaction.

Professor S. Shyam Sunder was invited to talk on the same topic at the

weekly seminar of the Constructed Facilities Division of the Department
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of Civil Engineering at MIT on December 5, 1984.
Professor S. Shyam Sunder was invited to talk on "Sea Ice and Its
Mechanical Behavior™ at a series of seminars on Engineering in the Arctic

organized during MIT's Independent Activities Period, January 1985.

PROFESSIONAL ACTIVITIES

1.

Professor S. Shyam Sunder was a member of the Conference Committee for
ARCTIC '85 - Civil Engineering in the Arctic Offshore Speciality
Conference of the ASCE held in San Francisco, March 25-27, 1985.

He was also moderator for a session on Probabilistic Methods in Arctic
Offshore Engineering.

Professor S. Shyam Sunder is Chairman of ASCE's Subcommittee on Arctic
and Frontier Regions. This subcommittee operates under the ASCE
Structural Division's Committee on Reliability of Offshore Structures.
This Committee met at San Francisco in conjunction with item 3.

Professor S. Shyam Sunder has been appointed Vice-Chairman of the ASCE
Task Committee on Reliability-Based Techniques for Designing Offshore
Arctic Structures which is entrusted with the responsibility of producing
a monograph bearing the same name. He attended the Task Committee
meetings at San Francisco (March 1985) and Houston (May 1985).

Professor S. Shyam Sunder attended the Arctic Energy Technologies
Workshop organized by the U.S. Department of Energy as part of a recently
initiated Arctic and Offshore Research Program. The workshop was held at
Morgantown, West Virginia, on November 14-15, 1984. He also participated
in the discussion group on Arctic Offshore Structures which had the task
of defining the state-of-the-art, identifying technical issues, listing

research and development needs, and recommending topics for research

support by the U.S. DOE.
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Professor S. Shyam Sunder participated in a workshop on "Northern
Research Needs in Civil Engineering" organized by the University of
Alaska, Fairbanké, in Seattle, Wa, February 16-17, 1985. The wor kshop
was sponsored by the National Science Foundation to help formulate a five
year plan for Arctic research under its mandate for implementing the
Arctic Research & Policy Act of 1984. Professor Shyam Sunder contributed
to the Committee on Offshore and Coastal Facilities, Design and
Construction.

Professor Jerome J. Connor is leading the organization of an
International Conference on Ice Technology (ITC '96) to be held at MIT,
June 10-12, 1986. An international Scientific Advisory Committee has
been set up with Professor Connor and Dr. C.A. Brebbia of Southampton
University, England, as Co-Chairmen. This conference will be sponsored
by the Center for Scientific Excellence in Offshore Engineering at MIT,
the Centre for Advanced Engineering Studies at the University of
Southampton, and the MIT Sea Grant Program.

Professor S. Shyam Sunder attended a meeting of the Ice Mechanics
Committee of ASME's Offshore Mechanics and Arctic Engineering Division of
which he is a member at Dallas, TX in February 1985.

Professor S. Shyam Sunder attended a meeting of ASCE's Committee on
Reliability of Offshore Structures of which he is a member at Houston, TX
in May 1985.

Professor S. Shyam Sunder h;é been invited to serve as a member of the
Conference Committee for POAC '87, the 9th International Conference on
Port and Ocean’ Engineering under Arctic Conditions. He is organizing
technical sessions on Numerical Modeling of Ice-Structure Interaction angd

Probabilistic Methods in Arctic Offshore Engineering.
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EXPERIMENTAL DATA FROM U.S. ARMY CRREL:

An informal agreement has been reached with the U.S. Army Cold Regions
Research and Engineering Laboratory, Hanover, N.H., Group under the
leadership of Dr. Gordon Cox concerning our use of experimental data obtained
by them. Under this agreement we can have immediate access to all their
experimental data, although any publication by us of their data would in

general be dated after they have had an opportunity to publish the results.

themselves.
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4. BUDGET

The total expenditure as of September 30, 1985 is $ 52315.33. This
reflecte expenditures for the thirteen month period September 1, 1984 (the
requested project starting date) through the end of September.

Professor S. Shyam Sunder charged 10% of his salary to the project and
20% to the SOHIO account through January 31, 1985. From February 1, 1985 he
charged 20% of his salary to the MMS account, and an equal amount to the
SOHIO account. He is charging 0.8 of a month's salary to the account in the
Summer, and l.2 months to the SOHIO account. Since September 1, 1985 he is
charging 20% of his salary to the MMS and SOHIO accounts respectively.
Professor Jerome J. Connor charged 10% of his salary to the MMS account and
10% to the SOHIO account through May 31, 1985, i.e., the academic year.
During this academic year he is charging 10% to the Sohio account.

Mr. 5-K Ting and Mr. F.S. Chehayeb were full-time Research Assistants on
the project from September 1, 1984 through May 31, 1985. During the Fall
Term their salary was charged to the SOHIO account, while during the Spring
Term their salary was charged to the MMS account. In the Summer
(6/1/85-8/31/85), Mr. S-K Ting and Mr. Jaideep Ganguly were full-time
Research Assistants on the project. Their salary was being charged to the

SOHIO account. This remains unchanged for the fall term.
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ABSTRACT

A finite element method of analysis is developed
and applied to the study of global and local pressures
generated on a cylindrical indenter'during sea ice
deformations in the creeping mode. Numerical simula-
tions are performed under plane stress conditions to
assess the influence of interface adfreeze and fric-
tion, material constants for a multi-axial power-law
creep model, indenter diameter, and ice sheet velocity
on predicted pressures. The results are compared
with those based on approximate methods of analysis.
Stress, strainrate and strain contours are obtained in
addition to the distribution of interface pressures.

INTRODUCTION

Extraction of hydrocarbons from the Arctic off-
shere reguires the design of drilling and production
platforms to withstand loading generated by perennial
ice features. Two levels of loading are typically
considered; Global ice forces govern the overall
structural geometry and dimensions as well as the ]
foundation design while local pressures are likely to
dictate wall thicknesses and local framing, and may
well govern structural cost.

The interaction of an ice sheet with a vertically
faced (and usually rigid) indenter is an important
loading condition for cylindrical structures and for
conical structures with grounded rubble pile or
accreted ice foot. In general, this indentation
phenomenon is characterized by the simultaneous
occurrence of viscous (rate-dependent) and fracture
behavior. ~

Several theoretical models based on approximate
methods of analysis that idealize the ice sheet as a
continuum have been proposed for predicting global ice
forces. These include: (1) the upper and lower
bound, plasticity type solutionsldf Michel and
Toussaint®, Croasdale et al.“, and Ralston3, (2) the
reference stress, power law creep solution of Ponter
et al. , and (3) the upper bound, power law creep
solutions of_ Bruen, Vivatrat and Chenss , and Ting and
Shyam Sunder’. The plasticity type models reguire
empirical definition of an average strain rate measure

References and illustrations at end of paper.

to account for the viscous behavior of ice, the
reference stress approach accounts for the effect of
variability in material constants in an approximate
sense, and the upper bound, power law creep solutions
require accurate specification of ice sheet
kinematics. No eguivalent theoretical models exist
for the case where either pure {linear elastic)
fracture or combined viscous and fracture effects
dominate.

Theoretical predictions cf interface pressures
are not generally available. However, Ting and Shyam
Sunder’ have applied the (approximate) strain path
method of anzlysis, originally developed for deeg
penetration problems in soil mechanics by Baligh',
to study interface pressures during plane strain
indentation. Their results for a power law creep
model of ice showed that normal interface pressures
may be 0.5-1 times the global pressure. They also
found that interface adfreeze and friction stresses
can significantly influence ice pressures.

The "continuum" predictions of ice pressures may
in many cases be too high by a factor of 2-10. Four
major factors can explain this uncertainty: (i)
incomplete modeling of the mechanical behavior of ice,
including temperature and fracture effects, (ii})
empiricism in the theoretical models resulting from
the use of approximate analysis methods, (iii)
inadequate modeling of contact forces at the iceé-
structure interface, and (iv) ignoring the effects of
size on material strength.

A study of ice indentation in the creeping mode
is important for two reasons: (a) creep is the pre-
dominant mode of deformation for artificial islands in
the Arctic nearshore region during "breakout" and/or
steady indentation conditions occurring in the winter)
and {(b) stresses, strains, and strainrates within the
continuum resulting from creep are necessary to pre-
dict the initiation and possibly even the propagation
of cracks when viscous effects influence fracture
behavior. In a recent paper, Shyam Sunder and Ting
have shown that a limiting tensile strain criterion
dependent on the instantaneous strainrate can explain
crack initiation in ice. Furthermore, for load
transmitting systems such as ice features (as opposed
to load bearing structural systems) the use of this
criterion for fracture propagation is likely to be
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conservative when compared to a classical fracture
mechanics approach. This is because the latter
considers only the propagation of pre-existinc cracks
with a given distribution of sizes, while the former
may be used to predict both the fnitiation and
propagation of cracks in a material originally in
virgin (flawless) form.

This paper is concerned with the development and
application of a finite element method of analysis for
studying global and local pressures generated on a
rigid, cylindrical indenter during sea ice deforma-
tions in the creeping mode. RNumerical simulations are
performed under plane stress conditions to assess the
influence of interface adfreeze and friction, material
constants for a multi-~axial power law creep model,
indenter diameter, and ice sheet velocity on predicted
pressures. The results are compared with those based
on approximate methods of analysis. Stress, strain-
rate, and strain contours are obtained in addition to
the distribution of interface pressures.

FINITE ELEMENT FORMULATION

Governing Eguations.-- For general viscoplastic
behavior, which includes creep, it is convenient to
work with time derivatives of the governing equations
for a solid. The weighted equilibrium-rate equation
which forms the basis for the finite element displace-
ment method is then given by:

[t eav-p (

where B is the strainrate - nodal velocity transfor-
nation matrix derived from the chosen displacement

expansion for the finite element, i.e.,
=20 (2)

The strainrate vector consists of two cozponents,
one due to elastic strains, characterized by the com-
pliance matrix C and its inverse the rigidity matrix
D, and the othexr due to inelastic (irrecoverable)
strains.

Eeciek (3)
where I refers to the inelastic strains. For linearly
elastic behavior, the compliance and rigidity matrices
do not vary in time. The inelastic component may con-
sist of rate-independent plastic strains, permanent
creep (nonlinear viscoelastic) strains, and/or visco-
plastic strains. 1In general, this may be expressed
as:

& = £(9,8,67,7) (4)

where T allows for temperature dependence.

Combining Egs. (1)-(3) and defining X as the
elastic stiffness matrix of the element leads to the
element equilibrium equation: '

KO=2+[8TDE av (5)

and the element stressrate - nodal velocity relations:

fa-

=DEBU-D i (6)

The global stiffness matrix, Kg, is obtained from Eq.
(5) using conventional procedures.

‘time between tj and tj,q to yield:

Material Modelina.-- In this paper, sea ice is
treated as a linearly elastic plus creeping material.
Thus, X is the element stiffness matrix usually
employed in linear elastic analyses. Under uniaxial
(compressive) loading conditions, creep in ice is
generally expressed in terms of a power law -, ji.e.,

Cc = a oN (7)
where a and N are constants with the temperature
dependence being included in the parameter a following
an Arrhenius activation energy law.

The multi-axial generalization of the creep law
as proposed by Palmer is based on assuming incom-
pressibility, which is valid for ice as long as the
hydrostatic stress is not too high such as under plane
stress conditions. It suffices then to relate the
creep strainrate tensor to the deviatoric stress
tensor. This is accomplished by assuming that the two
tensors are directly proportional to one another as
given by the associative flow rule:

€. = XS (8)

- 2
where A is a scalar parameter and S is a vector
containing the deviatoric stresses. For a von Mises
{isotropic) yielding surface, A is the ratio of the
octahedral shear strainrate to the octahedral shear
stress. For the uniaxial power law given in Eg. (7),
it follows that:

A e 3/2 a 0 N1 {(9)
with the effective stress measure O, defined as:

Te = (3/2 Sijsij)1/2 (10)

Given the stress vector, the deviatoric stresses
Day be obtained by subtracting the hydrostatic stress,
i.e., $=GU in matrix form. Then applying Egs. (10},
(2), and (8) in succession leads to the creep
strainrate vector.

Sclution Algorithm.-- An iterative solution
algorithm is developed to solve a pseudo~force form of
the nonlinear governing equations given in Egs. (5)
and (6). Although the algorithm has been applied to
the specific material model presented above, it can be
easily generalized to account for material anisotropy
and for cracking based on the limiting tensile strain
criterion. For purposes of discussion, attention is
focussed at the element rather than the global level.
At first the governing equations are integrated in

K(U341-03)=Riqq=Pi+ [ BTD(Ee juq=Ec ) v (1)

Z341-9%5 = D B(Us41-Us)-D(Ec,i41-5c, 1) 12)

Creep strains which appear in both the eguations
are nonlinear functions of stress since A in Eg. (8)
is not a constant. A two-level interative algorithm
is used to solve these equations for each new time
step tj4,1. The key steps in the solution algorithm
are as follows:

1. Compute the displacement increments from (the
global form of) Eg. (11) for the given load-
ing vector. In the first iteration on the
equation, the incremental creep strains are
assumed to be zero.
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Compute the incremental stresses and incre-
mental creep strains from Eg. (12) for the
displacement increments obtained in step 1
using the iterative algorithm {lower-level
jteration in k) discussed below. In the
first iteration on this equation assume the
incremental creep strains to be zero.

2.

Return to step 1 and iterate on Eq. (11)
(higher-level iteration in 3) using the
incremental creep strains obtained in step 2
until convergence is achieved. Two cover-
gence criteria are used: (a) ratio of norm
of displacement increment vector to norm of
displacement vector at given time step is
Jess-than-or-equal-to 0.001; and (b) absolute
value of energy norm is less-than-or-equal-to
0.001, i.e.,

sl - 8

| o ° (13)

|2 e
where QZ refers to the entire right hand side
of Eq. {11). The evaluation of the integral
defining the inelastic load vector is based
on a Gaussian quadrature formula (for a four-
noded quadrilateral element, four integration
points are used). Typically, 4-6 iterations
are required for convergence at the higher-
level.

} < 0.001

The evaluation of the incremental stresses and
incremental creep strains in step 2 requires the
sizvltaneous consideration of Egs. (12) and (8). 1In
addition to a nonlinear eguation solver, & numerical
vime integrator is needed to obtain results. Previous
investigators™ " T ¥ have used a simple successive
substitution type algorithm to decouple the two
equations. This involves the use of incremental creep
strains from iteration k to evaluate the incremental
stresses for iteration k+1 using Eq. {(12). The
incremental creep strains for iteration k+1 are then
evaluated with the Gmethod of numerical time
integration which expresses EqG. (8) as:

(Ec i+t - Fe,i) = *a So ftiey - %) (14)
where Sa is a weighted average of the gdeviatoric
stress vector in the time interval (tjs+y - tj) and Ag
is derived from a similar weighting on the effective
stress, i.e., ’

:Sa = (1-6) 55 + & Sj+1 (13)
© Typical values of @ lie in the range 0-1. A
value of & equal to zero yields the forward (explicit)
Euler method, while @ equal to one yields the backward
(implicit) Euler method. Both these formulas are
first-order accurate (for linear problems in which X
is a constant, and not dependent on the effective
stress), although the actual error of the backward
formula is considerably less than that of the forward
formula assuming that the former is iterated up to
convergence. A value of & equal to 0.5 yields the
twell-known trapezoidal rule, also called the improved
Euler's method since it is second-order accurate. A
linear stability analysis of the G-method shows that
it is unconditionally stable only for ®30.5.

For quasi-elastic problems in which creep defor-

mations. aré not dominant, experience has shown that
for small time increments G=0.5 is more accurate, and
that for large time increments G=1 is to be preferred.
However for creep dominant problems of concern here,
the convergence rate slows down considerably for
highly stressed elements when a=1 is used, and more
than 10-12 iterations may be needed for convergence at
the lower-level. This is computationally unattractive
since jteration is necessary at each integration point
within an element (four in the case of a quadrilateral
element) and highly stressed elements may occur often
in a large finite element grid, e.g., consisting 250
elements.

Convergence is accelerated here by developing a
lower-level algorithm that combines a Newton-Raphson
or tangent type iteration with the a-method. The
resulting equations are listed below:

3k "
Zopar=] gl -2 olety - ae7]
ase k
« ply—1 <., (16)
—i+1

wvhere Afck is obtained by applying Eq. (14) after
obtaining the stress quantities at iteration k, and
similiarly:

k
{aqsc ] st ax 3 51 CRs T]k
50 = 5t I +35 % To S5 ic8 (17)
—i+1 e

For the given material model, 3)/30, can be obtained
from Eq. (9). Notice that the algorithm becomes
explicit for &=0 as it should and no iteration is
requireé. Convergence is defined to occur when the
maximum absolute value of the relative change in point
stresses between iteration k and k+1 is less-than-or-
equal-to 0.001. Iteration is also stopped if the
actual point stresses are zero at kx and their maximum
absolute value is less-than-or-equal-to 0.001 at k+1.
Application of this iterative scheme with G=1 shows
that convergence is typically obtained in 4 iterations
instead of more than 10-12, thereby cutting down the
computational effort by approximately 50% if the
increased computational effort per iteration is
accounted for.

i Computer Implementation.-~ The finite element
analysis zlgorithm has been implemented in a computer
code called DECNEC. (Discrete Element Computational
NEtwork Controller). Data input is simplified by the
use of a pre-processor specially written for the pro-
gram. A pPoSt-processor called CORION, originally
developed at the Lawrence Livermore Laboratory, can
produce graphical display of stress, strain, and
strainrate contours as well as interface pressure
distributions.

The current implementation is a two-dimensional
version for plane stress problenms, while the develop-
ment of a plane strain version is underway. A four-
noded quadrilateral element is currently available.
Although an eight-noded ‘quadratic element is often
preferred (and will be included in the future), accu-
rate results can and have been obtained with the four-
noded element using a finer finite element mesh. The
program has the ability to simulate a free or fric-
tional contact between two deformable bodies, i.e., no

contact stresses due to adfreeze bond, by defining the
interface as a "slideline".
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Code Verification.-- The accuracy of the com-
puter code has been verified in two ways; through the
solution of simple test problems, and by comparing
(see subsequent section) the variability in predicted
global pressures due to indenter diameter, material
nodel parameters, and ice sheet velocity with that
predicted by approximate methods of analysis. In both
cases, the numerical soclutions are accurate to within
specified tolerances typically achievable in finite
element analyses, )

One of the test problems, for example, considers
a two-dimensional rectangular element subjected to a
uniform compressive stress (0, = -0) normal to one of
its sides and with normal movement constrained on the
other three sides (Fig. t). A simple analysis shows
that for the given material model, the lateral stress
(Uy) is given by:

Op = =0/2 [(1-2v)e~2/3EAt _ 4] (18)
where V is the Poisson's ratio and E is the Young's
modulus. This solution is valid for a constant value
of A, which in an average sense may be defined as its
value at steady state. Under steady state conditions,
i.e., large t, Eq. (18) shows that the lateral stress
is compressive and equal to half the z-stress, Fur-
thermore, the z-strainrate is the Creep strainrate and
equals -1/2 A0 yhile the lateral strainrate is zero as
it should be for the given boundary conditions.
Application of DECNEC using two finite elements veriw
fied this analysis.

NUMERICAL SIMULATIONS

Description of Case Studies.-~ Numerical simula-
tions are performed for the seven cases identified in
Table 1. The objectives of the first three simula-
tions are to quantify the effect of interface adfreeze
and iction on predicted indentation pressures. The
fixed condition provides an upper bound solution since
the ice-structure interface is considered to be
infinitely strong. The free condition corresponds to
no adfreeze bond and interface friction, while the
roller condition provides an intermediate solution,
The next two simulations study the influence of ice
sheet velocity on pressures. The chosen base velocity
of 0.195 m/hr corresponds to the recorded maximum
average velocity over a twelve-hour period just prior
to "breakout® (macrocracking) for an artificial island
in the Beaufort Sea. The sixth simulation attempts to
quantify the effect of a grounded rubble pile or an
accreted ice foot on ice pPressures by defining a
larger effective indenter diameter (2.85 times the
structural diameter). The final simulation studies
the effect of variability in constants defining the
material model on jce Pressures. Two sets of para-
meters f sea ice based on the work of Sanderson15
and Wang ", Yespectively, are considered: N=3, "~
2=2.125x10~6 (Mpa)=35-1; ang N=4, a=1.848x10~6 (Mpa)~-

s~1.  The elastic constants, which have negligible
influence on the steady state solutions, are taken to
be E=9.5 GPa and V=0.3.

Fr

Prior to carrying

it is necessary to set up the
specify a time increment for the
and define the excitation.

Numerical Implementation, —-
©ut the above studies,
finite element mesh,
analysis,

The finite element mesh is defined such that (i)
the aspect ratio of each element is as close to one as
possible, (ii) the scatter in stresses Predicted by

than 10%, and (1ii)} the boundary of the ice sheet is a
circle whose extent is sufficient to simulate the
infinite medium. The first criterion is maintained by
the pre-processor which makes the radial length of
each element equal to its arc length nearer the inden-
ter. The second criterion is controlled by specifying
the number of radiail segments into which a quarter-
plane may be divided. A value of nine is considered
here (for an eight-noded element five or six may
suffice). The last criterion is also implemented by
the pre-processor which makes the radius of the cir-
cular boundary equal to 9.5 times the indenter radius.
Accounting for Symmetry about the z-axis, the above
discretization leads to a finite element mesh with 252
elements and 285 nodal points (Fig. 2), The number of
degrees-of—freedom is 476 for the fixed condition, 538
for the roller condition, and 540 for the free condi-
tion.

The choice of time increment is made to satisfy
the conflicting requirements of accuracy and computa-
tional effort. Accuracy, in turn, is achieved by
allowing sufficient time for the solution to reach
steady state and by specifying a time increment that
captures the variability in response pPrior to reaching
Steady state. Experience with the simulations has
shown that it is ‘appropriate to consider a time incre-
ment which makes the exponent in Eq. (18) equal to 40
in 20 time Steps. For typical values of A and E, the
time increment is approximately 100 s.

The chosen uniform far-field velocity listed in
Table 1 defines the excitation here, although other
types of excitation such as environmental traction on
the ice sheet can be handled equally well. For a
given time step, the excitation is defined in terns of
an imposed displacement in the z-direction at the
far-fielg boundary nodes. This displacement value is
made to increase linearly in time, consistent with the
chosen uniform velocity.

-

DISCUSSION OF RESULTS

Global Forces.-- Table 2 lists the global
pPressures predicted by the finite element analysis for
the seven cases of interest. Pressure values are the
global forces divided by the indenter diameter D, and
ice sheet thickness t.

Comparing the first three values of global
Pressure it is seen that the fixed condition does
Provide an upper bound solution. The global pPressure
for the fixed case is about 28% higher than that for
the roller case. 1In turn, the global pressure for the
roller case is 1.93 or almost twice that for the free
case. This spread in global pressures is indicative
of the influence of interface friction and adfreeze
bond. The hundred percent reduction in pressure
between the roller and free case can be explained by
examining the stresses within the ice sheet. For the
roller case, the upstream and downstream stresses are
equal in magnitude and their resultants act together
in the z-direction. In the free case, the downstream
Siresses are almost zero since the lack of contact at
the interface on this side tends to eliminate any
influence of the indenter on the ice sheet. As a
result, the downstreanm part of the ice sheet acts
pPredominantly like a rigid body. This tends to reduce
global pressures by almost a half.

of global pPressure

elocity by a
in pressures

The fourth and fifth values

indicate that reducing the ice sheet v
factor of 6.4 leads to @ 46% reduction

adjacent elements at their commnmon boundary is less

33
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while increasing the velocity by a factor of 1.6 leads
to a 17% increase in pressures. Thus even a factor of
two uncertainty inivelocity will affect the pressures
only by about 20-30%. - :

Cases 2 and 6 provide some idea of the effect of
a grounded rubble pile or an accreted ice foot. By
defining an effective indenter diameter equal to 2.85
times the structural diameter, the global pressure has
reduced by 31%. However, the global force has
actually increased by 97% from 211 MN/(unit ice thick-
ness) for case 2. Two extreme scenarios can be con-
sidered to estimate the global force felt by the
structure when there is a grounded rubble pile: (i)
Ithe entire global force is transmitted to the struc-
ture which in turn transmits it to the foundation, and
(i1) both the structure and the grounded rubble pile
resist the global force, each transmitting to the
foundation a force proportional to its contact area
with the foundation. Under the first scenario, which
is probably overconservative, the global force on the
structure is 414 MN/(unit ice thickness) an increase
of 97% from case 2. Under the second scenario, which
may be reasonable only if the rubble pile is consoli-
dated and grounded firmly in the foundation soil such
as in the case of constructed ice packs, the global
force on the structure is 51 MN/{unit ice thickness) a
reduction of 76% from case 2. Further research is
necessary to quantify the level of force that can be
directly transmitted to the foundation by a grounded
rubble pile,

The last case shows that the two sets of material
constants considered in this paper lead to ice pres-
sures which differ by about 19%. Combining this
information with earlier experience indicates that
uncertainties in material constants for an isotropic
power law creep model may yield ice pressures that
vary by about 15-30%. However, improved material
models that include fracture and temperature effects
in addition to the transversely isotropic behavior of
sheet ice can have a major influence on ice pressure
predictions.

Calibration with Approximate Solutions.-- The
global pressures for cases 4 through 7 indicate the
influence of ice sheet velocity V, indenter diameter
D, and material constants a and N on the results. In
order to provide perspective and calibration with so-
lutions based on approximate methods of analysis, the
upper bound solution of Ting and Shyam Sunder’ corres-
ponding to a two-dimensional velocity field obtained
by superposing a uniform flow and a doublet, is con-
sidered. The resulting kinematic model resembles the
flow of an infinite ice sheet past a circular indenter
with the interface matching most the roller condition.
According to the solution, the global pressure is pro-
portional to (v/D}V/N, 1If this variation is valid,
the ratio of global pressures in cases 4 through 6--to
cese 2 should be 0.54, 1.16 and 0.70, respectively.
The finite element analysis predicts the ratios to be
0.54, 1.17 and 0.69. For the two sets of material
constants in cases 7 and 2, the approximate solution
predicts a ratio of 1.17 while the finite element
analysis predicts a ratio of 1.19. 1In all cases,
effect of changes in V, D, a and N on the finite
element solutions is almost identical to that predic-
ted by the upper bound, creep 'law solution.

the

In order to compare the actual (as opposed to
ratios of) global pressures, it is necessary to

recognizg that the two-dimensional nature of the
chosen kinematic field makes the approximate analysis

strain condition and

strictly correspond to a plane
Ponter et al.'s"

not a plane stress condition.
analysis for both plane strain and plane stress based
on the reference stress method can be used to derive a
correction factor by which to divide the approximate
solution for applying it under plane stress condi-
tions. For the material model with N=3 the correction
factor is 1.8 and for the N=4 model it is 1.96. The
approximate formula corrected by a rounded factor of 2
is given below:

(19)

where the quantity in brackets raised to the power of
1/N may be interpreted as the uniaxial strength of ice
evaluated at an average effective strainrate of 8/73
V/D using Eq. {7). Table 2 shows that the predictions
based on Eq. (19) differ from the finite element solu-
tions by less than 10%. The fixed condition is ob-
tained by multiplying the above equation by 1.3, while
the free condition uses a multiplying factor of 0.5
(Table 3). Note that (i) the uncorrected upper bound
solutions are overconservative by almost hundred per-~
cent or more, and (ii) the approximate solutions need
no longer be upper bounds once the correction factor
is applied.

Local Pressures.-- The maximum (peak) interface
normal stress for each of the seven simulations is
listed in Table 2. The table also lists a maximum
interface shear stress of 0.73 MPa for the fixed
condition. There are no interface shear stresses for
the roller and free conditions. Notice that in all
cases the maximum normal pressure is approximately
0.35-1.10 times the globzl pressure, and not several
(e.g., three) times the global pressure.

The maximum normal stress for the fixed condition
is lower than that for the roller condition by 17%,
although a reverse trend is observed for global
pressures. This occurs because part of the force in
the fixed condition is carried by interface shear
stress. On the other hand, the maximum normal stress
for the free condition is about 4% higher than that
for the roller condition. There are no interface
stresses on the downstream side for the free condition
due to lack of contact between the ice sheet and the
indenter. The small level of stresses that exist in
the predominantly rigid continuum on the downstream
side are transmitted to the structure from the up~
stream side, thereby increasing the normal stresses on
that side by the 4% mentioned above.

Comparison of the local and global pressures
shows that the ratio of the maximum normal interface
stress to the global pressure is approximately 0.35
for the fixed condition, 0.55 for the roller condi-
tion, and 1.10 for the free condition. Furthermore,
the variation of local pressures with V, D, a and N is
similar to that for global pressures. Thus multipli-
cation of Egq. (19) by 0.46, 0.55, and 0.55 can be used
to estimate the respective maximum normal pressures
(Table 3}. In a similar feshion, the meximum inter-
face shear stress for the fixed condition may be
estimated from the eguation with a multiplication
factor of 0.37.

For purposes of design it is necessary to con-
sider not only the maximum values of normal stress but
also its distribution on the structure. The design of

(9]

33



[ Sez lce Indentation in the Creecins Mode

Ame AR R

based on
the
contact

individual structural components is typically
a tributary loaded area. It is possible that
average integrated stress on this area due to
with the ice sheet is significantly less than the
point maxima of stress. Further, the average stress
may reduce for structural components which have larger
tributary areas. Figures 3 and 4 present the normal
stress distributions on the interface. Note that the
normal stresses are always zero where the indenter is
tangential to the direction of ice s}eet movement
(i.e., angle equal to zero degrees). At the end of
the first time step where the solution is predomin-
antly elastic, the distributions are cosinusoidal as
one may expect. However as steady state is reached,
there is a tendency for the distributions to become
rectangular or uniform. The distribution is more
rectangular for the free and roller conditions than
for the fixed condition which appears to be predomin-
antly consinusocidal due to lower stress levels, as
well as for the N=4 case than for the N=3 case since
an increasing value of N makes the ice behave more
like a rigid-plastic material. The figures also show
that downstream interface stresses are zero for the
free condition. The distributions are not affected,
at least visually, as V and D are varied, although
they have to be scaled according to the maximum normal
stresses in Table 2. A conservative design approach
may be to assume a uniform distribution of stresses
based on the maximum normal interface stress.

A careful consideration of the interface stress
levels sheds some light on which of the three condi-
tions, fixed, roller or free, is realistic. Figure 5
shows the distribution of interface shear stresses for
the fixed condition. At steady state, the distribu-
tion is predominantly sinusocidal with the maximum
value ¢f 0.73 MPa occurring at the tangent point.
shear strength of adfreeze bond and sea ice as
reported in the literature” ' varies over a wide
range 0.02-1.38 MPa. It is very likely that either
the adfreeze bond will give way or the ice will frac-
ture in shear over a significant fraction of the in-
denter perimeter. In addition, for the typical range
of effective strainrates close to the downstream tip
of the indenter, the tensile strength of ice is less
than the downstream normal interface stresses for the
fixed and roller conditions, both of which are ten-
sile. Once again, if the adfreeze bond does not give
way, a tensile fracture may occur in the ice over the
perimeter close to the interface on the downstream
side. Thus, for local pressures the use of the free
condition should be preferred. The choice will be
conservative over the fixed condition ang, marginally
s0, over the roller condition. However, the free
condition may be unconservative for global pressures
if the indentation problem is one in which the struc-—
ture is surrounded by an infinite ice sheet and it is
possible for frictional stresses or adfreeze bond to
develop at the interface. T~

The

Comparison with Pressure-Area Curves.-- Pressure-
area curves are often constructed to help designers
obtain the average pressures over tributary loaded
areas for structural components A typical curve
developed by Sanderson is shown in Fig. 6. The
darkly shaded areas on the figure correspond to actual
measurements of ice pressure under widely varying
conditions, while the lightly shaded areas represent
the author's extrapolation of the measurements. The
dark regions in the extreme left are from laboratory
indentatlon tests such as those of Frederking and

Gold , and Michel and Toussaint1 The central region
re‘lects measurements from ice breakers traveling in

the Arctic, while the two smaller regions on the right
correspond to global forces ‘on artificial islands
estimated from pressure sensor measurements in the icd
sheet. The contact area is defined as the indenter
area of contact for the laboratory and artificial
island data. For the ice breaker data, the contact
area is the local area over which the pressure
measurement is made and not the form area of the ice
breaker. This figure shows that for an artificial
island with a contact area of 200 m2, the indentation
pressure may be around 1 MPa. However for a local
area of 10 m?2 on the same structure, the indentation
pressure may be around 3 MPa.

The local to global pressure ratio of three
obtained from the pressure-area curve seems to contra-|
dict the findings in the previous subsection. Fortund
ately, this is not so. 1If the contact area in Fig. 6
is interpreted as Dt, then a smaller contact area
implies a smaller indenter diameter if the ice thick-
ness remains unchanged. The effect of indenter
diameter is well modelled by Eg. (19). A plot of the
maximum normal interface pressure estimate from the
equation leads to the s501id line in the figure. Eq.
(19) is appropriately modified to account for transi-
tion from plane stress to plane strain using Ponter et
al.'s reference stress method" This affects the
curve, in an insignificant manner, over the region i1-
10 =2. When the effective strainrate, i.e., 8//3 v/D,
exceeds S5x10™4 s", ice is assumed to have fractured
(crushed) and the uniaxial strength is capped, leading]
to the flat portion of the curve on the extreme left.
The predicted behavior provides an excellent match to
Fig. 6. Thus, a more appealing interpretation of the
figure is to consider the contact area as the indenter
area (Dt in our case) and ncot the tributary loaded
area for a siructural component, and the indenter
pressure correspending to a given contact area as the
maximur normal interface pressure for that indenter.
The distribution of the interface stresses may be
assumed uniform over the indenter area of contact as
concluded earlier. BHowever, a different boundary
value problem invelving a smaller contact area, as
opposed to contact over half the perimeter in the free
condition, will lead to higher interface pressures.

The key assumption in generating the analytical
curve in Fig. 6 concerns the choice of V. The value
of 0.125 m/hr considered here is based on data for an
artificial island just prior to "breakout" or macro=-
cracking, which leads to an excellent match between
predicted and measured indentation pressures for the
structure. However, significantly higher velocities
do occur in the field for which the current predictive
models based purely on an isotropic creep law will
lead to increasing pressures. Fracture in ice will be
the key mechanism that limits pressures generated
under higher velocities.

Multiaxial Behavior of Iice Sheet.-- A study of
the multiaxial behavior of an ice sheet durincg inden-
tation in the creeping mode provides clues to likely
failure modes, perticularly fracture. All forms of
fracture (crushing, spalling, splitting) initiate as a
result of tensile strains perpendicular to the crack
direction., Even if the applied loads at the element
level are not tensile, it is possible for tensile con-
ditions to occur in a rotated frame of reference,
e.g., & 45° rotation in the case of pure shear.

Table 4 lists the principal stresses at the point
of maximum interface pressure at two time instants:

at the end of the first time step (around 100 s) where
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the solution is predominantly elastic, and at the
twentieth time step (around 2000 s or 30 minutes)
where the solution has reached steady state and is
predominantly creep. The bilaxial stress state at the
first time step is compression-tension for all the
cases except for a fixed condition where it is
compression-compression. As creep starts to dominate,
all the cases tend to compression-compression.

Figures 7 and 8 shows how this compression-compression
region grows in time for the fixed and free cases.

The region is much larger for the fixéd condition than
for the free condition. The roller condition is some-
where in between although it resembles more the free
condition. The most striking observation that can be
made from these figures is that tensile stresses occur
almost all over the ice sheet. Biaxial tension tends
to occur on the downstream side, while compression-
tension states of stress are present on both sides,
Experimental evidence under compression-tension states
of stress“® shows that the occurrence of even small
ftensile stresses weakens ice considerably, leading to
Ipremature fracture when compared with uniaxial tensile
loading.

Figure 9 shows the strain fields, which are more
relevant to explaining fracture initiation. Since the
algebraically maximum principal strains are positive
{or almost so)} over the entire ice sheet for the fixed
and roller conditions at steady state, there is no
compression-compression (and by symmetry no tension-
tension) region of strain. A tension-compression
state of strain dominates the ice sheet, with tensile
strains exceeding 0.001 at steady state. As the
tensile failure strain is about 0.00%1 or less for
strainrates greater than 16=7 s=1 under just uniaxial
loading, it seems likely that cracking will occur even
before steady state creep is reached. Similar
conclusions apply for the free condition, the only
difference being that downstream strains are
negligible.

The maximum effective strainrates for the seven
simulations are listed in Table 2. PFor the kinematic
model considered by Ting and Shyam Sunder’ which
is closest to the roller condition, the maximum
effective strainrate equals 3//5 V/D. The prediction
of 2.3x10-6 s=1 for case 2 compares well with the
finite element analysis value of 3.4x10-6 s-1,
Further, cases 4 through 6 are consistent with the
predicted proportionality to V/D. Contours of
effective strainrate are plotted in Fig. 10. The
strainrates tend to zero at the tangent points for the
roller and free conditions as one may expect and is a
maximum close to but not at the tips. On the other
hand, the tangent point has the maximum value for the
fixed condition. In the immediate vicinity of the
indenter, these plots are different from the circular
contours predicted by the kinematic model in the
approximate analysis. This finding reinforces Ting -.
and Shyam Sunder's’ observation that the -~
approximate upper bound analysis is quite accurate for
global pressures, although the use of the strain path
method with a kinematic model that does not capture
interface conditions may be inadequate for local
pressure predictions. ’

CONCLUSIONS

This paper has presented a finite element method
of analysis for studying the problem of sea ice
indentation in the creeping mode of deformation. The

lanalysis strategy, applicable to general viscoplastic
[pehavior including creep (nonlinear viscoelasticity),

is based on a secant type iteration inveolving 4-6
cycles per time step on the global equations of motion
and a Newton-Raphson or tangent type iteration,
combined with the O-method of time intearation and
typically not exceeding 4 cycles per time step, on the
rate-dependent constitutive relations at each integra-
tion point within an element. The resulting computer
code, called DECNEC, is capable of simulating a free
or frictional contact between two deformable bodies,
i.e., no contact stresses due to adfreeze bond, by
defining the interface as a "slideline".

Numerical simulations of ice-structure interac-
tion for a rigid cylindrical indenter under plane
stress conditions, a problem of general interest for
structural concepts in the Arctic, and an isotropic
(von Mises) multi-axial power law creep model for sea
ice showed that:

1. Global forces vary by a factor of 2.5 depend-
ing upon whether the interface condition is
fixed (infinite adfreeze bond strength),
roller, or free (no adfreeze bond strength or
interface friction}. The fixed condition is
about 1.3 times and the free condition about
0.5 times the roller condition.

Finite element analysis predictions of global
pressure differ from a (approximate) modified
upper bound solution of Ting and Shyam

Sunder’ by less than 10% for varying
velocity, indenter diameter, and material
constants.

The ratio of maximum normal interface pres-
sure to global pressure approximately varies
in the range 0.35-1.10 depending upon the
interface condition. It is 0.35 for the
fixed condition, 0.55 for the roller condi-
tion, and 1.10 for the free condition.

The maximum (peak) normal interface pressures
vary by a factor of 1.26 depending upon the
interface condition. The fixed condition is
about 0.83 times and the free condition about
1.04 times the roller condition. The maximum
interface shear stress for the fixed condi-~
tion is about 0.81 times the corresponding
maximum normal pressure. However, a differ-
ent boundary value problem involving a small-
er contact area, as opposed to contact over
half the perimeter in the £ree condition,
will lead to higher interface pressures.

Pressure-area curves should be considered as
providing the maximum normal interface
pressure for a given indenter area of contact
(form area), rather than the average
integrated normal pressure over a tributary
loaded area for a structural component. It
is conservative to assume a uniform or
rectangular distribution of the local
pressure over the indenter area of contact
for purposes of design.

Tensile stresses, strains and strainrates
occur almost all over the ice sheet, and may
be the key to explaining fracture behavior
during indentation. While biaxial compres-
sion and tension states tend to occur for
stress on the upstream and downstream sides,

respectively, the state of strain is almost
eglways compression-tension. The levels of
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tensile strain are often sufficient to cause
cracking even before steady state creep is
reached.

The possible effect of a grounded rubble pile or
accreted ice foot on ice pressures was assessed by
defining an effective indenter equal to a multiple
(2.85) of the structural diameter. This resulted in a
factor of 1.97 increase in global force. In the case
of a grounded rubble pile, it would be overconserva-
tive to consider that all this force is transmitted to
the foundation by the structure. On the other hand,
the force transmitted to the foundation by the struc-
ture would decrease by a factor of 4.14 if both the
structure and the grounded rubble pile could transmit
a force proportional to the contact area of each with
the foundation. This may be reasonable only if the
rubble pile is consolidated and grounded firmly in the
foundation soil such as in the case of constructed ice
packs. Further research is necessary to quantify the
level of force that can be directly transmitted to the
foundation by a grounded rubble pile.

The numerical simulations alsoc showed that (i)
even a factor of two uncertainty in velocity will
affect ice pressures only by about 20-30%, and (ii)
uncertainties in material constants for an isotropic
power law creep model may yield ice pressures that
vary by about 15-30%. However, improved material
models that include fracture and temperature effects
in addition to the transversely isctropic behavior of
sheet ice can have a major influence on ice pressure
predictions. In particular, fracture in ice will be
the key mechanism that limits ice pressures generated
under the significantly higher velocities that occur
in the field when compared with the value Jjust prior
to "breakout" or macrocracking considered here. This
is an area for further research.

NOMENCLATURE

constant parameter in power law
transformation matrix

finite element material compliance matrix
diameter of strumcture

elastic rigidity matrix

Young's modulus

transformation matrix for relating S to g
elastic stiffness matrix of finite element
global stiffness matrix

power law exponent

global force acting on structure

applied load vector

deviatoric stress vector

temperature

time or ice thickness

nodal displacement vector

approach velocity of ice sheet

parameter in time integrator

total strain vector

inelastic strain vector

creep strain vector

associative flow rule constant

Poisson's ratio

effective stress meassure

stress vector

rate form is represented by a dot above the
symbol

rJaa ¢ Holeole a <|a Hinjy v Z|AIRlo
fa lelel | ot v g;l 160 vlo Ulajw o
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TABLE 1 - SUMMARY OF CASES

| case | Velocity Diameter | interface |
(ft/hx) (£ft) conditior |
1 Q.64 350 3 Fixed
2 0.64 350 3 Roller
3 0.64 350 3 Free
4 0.10 350 3 Roller
5 1.00 350 3 Roller
6 0.64 1000 3 Roller
7 0.64 350 4 Roller
Note: 1 ft = 0.3048 n
TABLE 2 - SUMMARY OF RESULTS .
P/Dt {MPa}
Finite Maximun Interface Maximum Effective
Case Flement Modified Normal Stress Strainrate
Analvsis Upper Bound {MPa) (s")
1 2.54 2.44 0.90 4.0x1c"
2 1.98 1.87 1.08 3.4x10"6
3 1.02 0.94 1.13 4.0x10-6
4 1.07 1.0% 0.59 5.5x10™7
5 2.31 2.18 1.28 5.5%10°6
6 1.36 1.32 0.76 1.1x10"8
7 2.34 2.20 1.27 4.5x10"8

1 MPa = 145

Note: Maximum Interface Sheer s

psi

cress for Fixed Condition is 0.732 MPa

TABLE 3 - MULTIPLYING FACTORS FOR APPROXIMATE MODEL (Eq. 12)

condition I Global Pressure i Maximum iInterface |
Kormal Stress |

Roller 1.0 0.55

Fixed 1.3 0.46

Free 0.8 .55

Note: Factor for Maximum Interface Sheay Stress in
Fixed Condition = 0.37

TABLE 4 - PRINCIPAL STRESSES AT UPSTREAM TIP OF INDENTER

Elgstic (Time Step 1) Steady State Creep (Time Step 20)
Case

9 (MPa) 9y (MPa) o,(MP2) oy (Mpa)
1 -0.19 ~=0.07 -0.90 -0.39
2 ~0.30 +0.07 -1.08 -0.16
3 -0.36 +0.10 -1.13 -0.16
4 -0.18 +0.04 -0.59 .. -0b.09
5 -0.35 +0.08 -1.28 -0.2C
6 - -0.11 +0.03 -0.76 -0.10
7 -0.31 +0.08 -1.27 -C.26

Positive

Note: Tension is
) 1 MPa = 14

5 psi

R —
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ABSTRACT

A general orthotropic elastic - power law creep model for sea ice is
presented and then a finite element method of analysis is developed and
applied to study the effect of sea ice anisotropy on indentation in the
creeping mode. Numerical simulations are performed under plane stress
conditions to predict the influence of interface adfreeze and fricticn,
material constants for a transversely isotropic elastic - power law creep

model, rubble pile or grounded ice foot, and ice sheet velocity on global

[a}

forces and local pressures generated on a rigid cylindrical indenter. The
results are compared with those based on approximate methods of analysis.

Interface pressure distributions are obtained in addition to contours of

stress and strain.

INTRODUCTION

The interaction of an ice sheet with a vertically faced indenter is an
important loading condition for cylindrical structures and conical structure
with érounded rubble pile or accreted ice foot in the Arctic. 1In generai,
this indentation phenomenon is characterized by the simultaneous occurrence
.vi§cous {rate—~dependent) and fracture behavior.

Several theoretical models based on approximate methods of analysis tha

idealize the ice sheet as an isotropic continuum have been proposed for



predicting global ice forces. These include: (1) the upper and lower bound,
plasticity solutions of Michel and Toussaint {1), and Croasdale et al. (2) .
{2) the reference stress, power law creep solution of Ponter et al. (3), and
{3) the upper bound, é@wer law creep solutions of Bruen, Vivatrat and Chen
(4,5), and Ting and Shyam Sunder (6). Theoretical predictions of interface
pressures are not generally available. However, Ting and Shyam Sunder {(6)
have applied the (approximate) strain path method of analysis to study inter-
face pressures during plane strain indentation. In a recent paper (7)., two
of the authors and their colleagues have developed and applied a finite
element ("exact") method of analysis to predict both global forces and local
pressures assuming an isotropic elastic - power law creep model for sea ice.

Sea ice, however, is not an isotropic material. Field observations have
shown that this type of ice, which is predominantly columnar, has two sources
of anisotropy: (a) the c-axis is oriented perpendicular to the axis of
crystal growth, and (b) the c-axes of different crystals may show preferred
azimuthal orientation in the plane on which they lie. There is strong
evidence suggesting that the preferred azimuthal orientation is correlated
with the instantaneous current direction just underneath a growing ice sheet
(E'E'lg)' While such alignments are common in landfast ice, observations
suggest that strong alignments can develop in pack ice when there is little
rotation of the floes relative to the current direction (ll,lz).

The anisotropy of sea ice strongly influences the macromechanical
behavior of first year sheet ice{ while itsninfluence on the behavior of-
multi~year floeé, though less well studied, may be less. In first year sheet

ice, the first source of anisotropy leads to a ratio of vertical to horizontal

stress at constant strainrate varying from 2-5 (}2-&1), while the second



source of anisotropy leads to stress ratios of 0.25-0.60 at a 45kdegree
azimuthal angle to the c-axis and 0.50-0.95 at a 90 degree angle (18-21).

Two theoretical Wodels have been developed for predicting indentation
pressures assuming the ice sheet to be transversely isotropic. They are: (1)
the upper and lower bound, plasticity solution of Ralston (22}, and (2) the
upper bound, power-law creep sclution of Vivatrat and Chen (23) . The former
model has been incorporated in the API Bulletin 2N guidelines (gﬁ).

A study of seé ice indentation in the creeping mode is important for two
reasons: (a) creep is the predominant mode of deformation for artificial
islands in the Arctic nearshore region during "breakout" and/or steady inden-
tation conditions occuring during the winter, and (b) stresses, strains, and
strainrates resulting from creep are necessary to predict the nucleation,
growth initiation and propagation of cracks when viscous effects influence
fracture behavior.

This paper is concerned with (i) the development of a general orthotropic
elastic - power law creep model for sea ice, and (ii) the development and
application of & finite element method of analysis to study the influence of
sea ice énisotropy on indentation in the creeping mode. HNumerical simulations
are performend under plane stress conditions to predict the influence of
interface adfreeze and friction, material constants for a transversely isotro-
pic elastic - power law creep model, rubble pile or accreted ice foot, and ice
sheet velocity on predicted pressures. The results are compared with those
based on approximate methods oglgnalysis. Interface pressure distributioﬁs

are obtained in addition to contours of stress and strain.



MATERIAL MODELING =~

Theoretical Formulation

The rate-dependent material model for sea ice assumes that the total

strainrate is the sum of the elastic strainrate and the Creep or viscous

strainrate, i.e.,

=L 0+ g (1)

I

where C is the linear elastic compliance matrix for an orthotropic material.
To derive the relationship between the creep strainrate and stress
vectors, first an effective stress measure generalized for orthotropic

materials with identical behavior in compression and tension is defined.

a a a
1 2 2 2 3 2
o = /A [—3 (cxx- yy) —3 (cyy- zz) + 3 (ozz—cxx)
2 2 2
+ 2a4 Oxv + 2a5 cvz + 256 GZX ] (2)

Under uniaxial (compressive) loading conditions, creep in ice is usually
expressed in terms of a power law {25). Then, the effective strainrate and

effective stress are related by:

€e = a 0N (4)
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where a and N are constants with the temperature dependence being included in
the parameter a following an Arrhenius activation energy law which is valid
for temperatures lessk}han -i0°C.

The strainrate vector can be related to the effective stress vector by

defining a scalar potential function ¢ which obeys the associated flow rule,

i.e.,
. ¢ :
with
cN+l (6)
¢ = a— |
N+1

Combining Egs. (5), (6) and (3) yields the desired relationship:

& = A 5% (7)
where

A= 3/A a o N1 (8)
and

S* =GO (9)

Note that S* is not the conventional deviatoric stress vector. It may be
thought of as a pseudo deviatoric stress vector for an anisotropic material.
Given the stress vector, the pseudo deviatoric stresses may be obtained
from ﬁq. {9)« Then applying Eqsii(3), (8), and (7) in succession leads té the
creep strainrate vector. Note that under isotropic conditions, i.e., aj - ag
= 1, all these eguations redqce to the formulation proposed by Palmer (26) and

described in Ref. (7).



Estimation of Model Parameters

Six uniaxial (compression) tests at constant Strainrate are necessary to
obtain the seven orthotropic model parameters: a, N, az-ag. Note that (i) ay
can be set equal to one without loss of generality, and (ii) there is experi-
mental evidence which shows that the power law exponent N can be considered
independent of the direction of loading. For purposes of the current
derivation, it is assumed that the c-axes of the sea ice crystals lie on the
Y-z plane énd that they are aligned in the y-direction. This implies that the
x-axls represents the crystal growth direction.

Let the tests be conducted in the three orthogonal directions y, x and z
respectively, and along the three 45° axes on the y-z, x~-y and z-x planes
respectively. Furthermore, let B1-85 represent the experimentally determinegd
ratios of the maximum stresses for the last five tests, respectively, to the
maximum stress in the reference y-direction at the same strainrate.

According to the theoretical formulation, the parameters a and N refer
directly to the uniaxial test along the c-axis, i.e., the y—-direction. The

remaining parameters may be determined from the following equations:

n n n
Bl - 82(1—81)
a2 =T n n n
61 - 82(l+Bl) (10)
n n n
81 + 82(1-—81)
&3 = - n n n ' (11)
81 - 82(l+51) )
- A -n _ ,-n
a4 = 5 [484 82 ] (12)
. A -n _ .-n : . (13)
ag = 7 [483 Bl ]



A -n "
a—'-é[485 - 1]

6 (14)

where n=2N/(N+1). Tybical ranges for the B8i's (previously referred to in the
introduction) are 2-5 for Bj, 0.50-0.95 for By, and 0.25-0.60 for B3. Values
for By and Bg are not generally available in the literature. Since these two
parameters determine only the out of plane shear strains and stresses in sheet
ice, they have no influence on plane strain and plane stress indentation
problems. However, the parameters will have to be obtained in the case of
three-dimensional indentation problens.

For a tranversely isotropic material, i.e., isotropy in the y-z plane,
Bo=B3=1 and By=Bg. As a resﬁlt ay=a3=l, ag=ag, the parameters aj and ag are
functions of only B;, while a, depends on both B; and B4. Only three uniaxial
tests are required to obtain a, N, By and B4; one each in the y and x
directions and one along the 45° axis on the x-y or z-x planes.

Frederking (27) has conducted plane strain uniaxial compression tests on
columnar-grained transversely isotropic freshwater ice. For his type A tests,
strains in the 2-direction are constrained to zero and stresses are applied in
the y-direction. The ratio T, of the plane strain stress to the unconfined
stress at the same strainrate is directly related to By by the following

equation:

2n

481

n
4 -
Bl 1

]l/n (15)

The equation predicts T; to vary between 2.1-5.1 for experimentally observed
values of B; ranging from 2 to 5, and N between 3 and 4. This is consistent
with Frederking's experimental observations of T, which were close to 2 at

high strainrates and to 5 at low strainrates. In the type B tests, strains in
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the x-direction are constrained to zero while stresses are agaln applied in

the y-direction. In this case, the stress ratio I'y is given by:

1 1/n (16)

Since B) is generally greater than one, Ty will be less than-approximately 1.2
for N between 3 and 4. For typical values of By, the predicted values of Ty
range from 1.0l to 1.06. This is consistent with Frederking's experiments
which showed negligible influence of x-direction confinement on stresses.
Triaxial tests of first-year sea ice have been conducted by
Richter-Menge, Cox et al. (20) on samples obtained from horizontal cores in
the plane of the ice sheet at angles of 0°, 90°, and 45° to the preferred
c-axis orientation. According to the orthotropic material model, the ratio Ty
of the maximum axial stress with a confining pressure egual to T times the
axial stress to the maximum axial stress in the unconfined state at the same

strainrate should be given by:

o1 (17)
rt_ 1~-T

The deviatoric stress (i.e., axial stress minus radial stress) normalized by
the unconfined stress is independent of T or confining pressure for the model

and equal to one. Experimental data for this quantity is plotted versus

confining pressure in Fig. 1, which shows that sea ice is moderately pressure

sensitive .



FINITE ELEMENT FORMULATION

Governing Eguations

For general viscopiastic behavior, which includes creep, it is convenient
to work with time derivatives of the governing equations for a solid. The
weighted equilibrium-rate equation which forms the basis of the finite element
displacement method is then given by:

[T oav=rp (18)
where B is the strainrate - nodal velocity transformation matrix derived from

the chosen displacement expansion for the finite element, i.e.,

(19)

lm o
lc

=B
Combining Egs. (18) and (19) with Eqg. (1) and defining K as the elastic

stiffness matrix of the element leads to the element equilibrium eguation:

Ku=p+[8TD g av (20)
and the element stressrate - nodal velocity relations:
9=DBU-DE& (21)

where D is the linear elastic rigidity matrix for an orthotropic material. The
global stiffness matrix Kg is obtained from Eg. (20) using conventional
procedures.

Solution Algorithm

An iterative solution algorithm is developed to solve the pseudo-force
>fozm of the nonlinear governing equations given in Egs. (20) and (21). This
is a generalization of the algorithm for isotropic materials presented in an
earlier paper (7). For purposes of discussion, attention is focussed at the
element level rather than the global level. At first the governing equations

are integrated in time between tj and tj;; to yield:
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fi+l'£i + f ET D (Ecri+1Ecri) AV {22)

fi+i=9i = DB (Uj+1-Uj) - D (Ecrj+1-Eci i) (23)

Creep strains which appear in both equations are nonlinear functions of

stress since XA in Eg. (7) is not a constant. A two-level iterative algorithm

is used to solve these equations for each new time step ti+1+ The key steps

in the solution algorithm are as follows:

l. Compute the displacement increments from (the global form of) Eg.

.

(22) for the given loading vector. 1In the first iteration on the
equation, the incremental creep strains are assumed to be zero.
Compute the incremental stresses and incremental creep strains from
Eq. (23) for the displacement increments obtained in step 1 using the
iterative algorithm (lower-level iteration in k) discussed below. 1In
the first iteration on this eguation assume the incremental creep
strains to be zero.
Return to step 1 and iterate on Eg. {22) (higher-level iteration in
j) using the incremental creep strains obtained in step 2 until
convergence is achieved. Two convergence criteria are used: (a)
ratio of norm of disélacement increment vector to norm of
displacement vector at given time step is less-than-or-egual-to
10-3; and (b) absolute value of energy norm is less-than-or-egual-to
1075, i.e.,
. ad |
— | < w073 (24)

2% - &

where AP refers to the entire right hand side of Eg. {22). The eval-
uation of the integral defining the inelastic load vector is based on
a Gaussian quadrature formula. Typically, 4-6 iterations are

reguired for convergence at the higher level.
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The evaluation of the incremental stresses and incremental Creep strains in

step 2 reqguires the simultaneous consideration of Eq. (23) and Eg. (7).

In

addition to a nonlinear- equation solver, a numerical time integrator is needed

to obtain results.

The incremental creep strains for iteration k+l are evaluated with the

a-method of numerical time integration which expresses Eq. (7) as:

(Ecri+l = Ecvl) = Ag S*q (tj4y = ty)

(25)

where S*, is a weighted average of the pseudo deviatoric stress vector in the

time interval (tj43 - tj) and Ay is derived from a similar weighting on the

effective stress. Since G in Eq. (9) is independent of

the product of G with the weighted average of the total
same time interval given by:
Sa = (1-0) g5 + @ 0543

A value of « greater than or egual to 0.5 results in an

stable, implicit algorithm. The well-known trapezoidal

time, S*q4 is egual to

stress vector over the

(26)
unconditionally

rule and backward

Euler method are obtained with @=0.5 and a=1, respectively.

For accelerating solution convergence in creep dominant problems of

concern here, a lower-level algorithm is developed which combines a

Newton-Raphson or tangent type nonlinear equation solver with the a-methogd.

The resulting equations are listed below:

dAe
(1 +p — K4 k+lo g + D [B AU - Ac X)
Y T —i+1 - - = -—  —
—i+]1
dAe
+ [ ] . .k
- —i+
30 T i+1

(27)
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where éfck is obtained by applying Eq. (25) after obtaining the stress quanti-

ties at iteration k, and similarly:

dhe (28)
[__::E___]k= At a [%9 + 3/A O 1 3& S* E«T]k

30, T ¢ %o ¢

—1i+41 e

For the given material model, 3X/d0, can be obtained from Eqg. (8). Convergence
is defined to occur when the maximum absolute value of the relative change in
point stresses between iteration k and k+l is less than 0.0l. Iteration is
also stopped if the actual point stresses are zero at k and their maximum
absolute value is less than 0.0l at k+l. Application of this iterative scheme
with a=1 shows that convergence is typically obtained in 4 iterations.

Computer Implementation and Code Verification

The generalization of the finite element analysis algorithm for material
anisotropy has been implemented in the computer code called DECNEC (7). The
current implementation is a two-dimensional version for plane stress problenms.

The accuracy of the computer code for the anisotropic material model has
been verified for the case of transverse isotropy through the following test
problems:

(a) Constant}strainrate unconfined compression tests in and transverse

to the plane of isotropy.

{b) Constant stress and constant strainrate tests with boundary

conditions similar to Frederking's (Zl) type A tests.

(c) Pure shear test with s?resses applied in the plane of isotropy.

The first test in (a) checks on the parameters a and N of the material model,
while the second is a check on B8; when it is conducted at the same strainrate.

The two tests in (b) are further checks on a, N, and 8y. For an applied
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constant y-direction stress Oy, a simple analysis shows that the lateral

stress (0,) is givén by:

0z = = 0y [(ag/A - vie ~(A/3)EAt _ a,/p) (29)
where Vv is the Poisson's ratio in the plane of isotropy and E is the
corresponding Young's modulus. This solution is valid for a constant value of
A, which in an average sense may be defined as its walue at steady state.
Under steady state conditions, i.e., large t, Eg. (29) shows that the lateral
stress is equal to ajs/A or 1-0.58;7" times the y-stress. Application of
DECNEC verified this analysis. If the strainrate in the plane of isotropy for
the second test is kept the same as that in (a), then the stress in the
direction of the applied strainrate must be greater than the corresponding
stress in (a) by the factor T, of Eg. (15). Noté that T, is a function of
only B). The pure shear test in (c) is a check on Eg. (13) for ag which is a
function of only By in the case of transverse isotropy. The test conditions
are illustrated in Fig. 2. Verification is achieved by comparing the
theoretical predictions for shear strains with the numerical results. No
checks are needed for parameters B4 and Bg or a4 and ag since they do not

influence plane stress indentation behavior.

NUMERICAL SIMULATIONS

Description of Case Studies

Numerical simulations are performed for the 14 cases identified in Table
1 based on transversely isotropic pehavior of sea ice. The objectives of
simulations 1-3 and 10-14 are to quantify the effect of interface adfreeze and
friction on predictea indentation pressures. For global forces, the fixed
condition provides an upper bound solution since the ice-structure interface

P

is considered to be infinitely strong. The free condition corresponds to no
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adfreeze and friction, while the roller condition provides an intermediate
solution. Simulations 4 and 5 study the influence of ice sheet velocity on
pressures. The chosen pase velocity of 0.195 m/hr corresponds to the recorded
maximum average velocity over a twelve-hour period just prior to "breakout"
(macrocracking) for an artificial island in the Beaufort Sea. The sixth simu-
lation attempts to quantify the effect of a grounded rubble pile or an
accreted ice foot on ice pressures by defining a larger effective indenter
diameter (2.85 times the structural diameter). Simulations 9—14 study the
effect of variability in constants a, N, and B} defining the material model on
ice pressures. Two sets of the parameters a and N for sea ice based on the
work of Sanderson (28) and Wang (29) , respectively, are considered: N=3,
a=2.125x107% (MPa)~3s~1; and N=4, a=1.848x1076 (MPa)~4.~l. Three values of
B1 equal to 2,3 and 5 are studied. The elastic constants in the plane of
isotropy, which have negligible influence on the steady state solutions, are
taken to be E=9.5 GPa and v=0.3. Finally, simulations 7 and 8 are used to
predict pressure area curves under plane stress conditions.

The criteria governing the choice of finite element mesh and time incre-—
ments for the simulations are described in an earlier papef (7). The chosen
uniform far-field velocity listed in Table 1 defines the excitation here. For
a given time step, the exication is'specified in terms of an imposed displace-
ment in the z-direction at the far-field boundary nodes (Fig. 3). This
displacement value is made to increase linearly in time, consistent with the
chosen uniform velocity. ' -~

Discussion of Results

Global forces. 6 Table 2 lists the global pressures predicted‘by the

finite element analysis for the 14 cases of interest. Pressure values are the

global forces divided by the indenter diameter D, and ice sheet thickness t.
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The table also listsithe factor by which the global pressure increases as a
result of anisotropy.

Comparing the globél pressures for cases 1-3 ang 10-14, it is seen that
the fixed condition does provide an upper bound solution. The global pressure
for the fixed condition is greater than that for the roller condition by a
factor of about 1.22 to 1.27. In turn, the global pressure for the roller
condition is 1.97 to 2.00 times that for the free condition. The hundred
percent reduction in pressure between the roller ang free cases occurs because

the lack of downstream interface contact in the latter case tends to release

the downstream stresses in the ice sheet,

while increasing the velocity by a factor of 1.6 leads to a 15-18% increase in
pressures. Thus even a factor of two uncertainty in velocity will affect the .
pressures by only about 20-30%.

Cases 2 and 6 provide some idea of the effect of a grounded rubble pile
Or an accreted ice foot. The global force increases by a factor of 1.92 when
the effective indenter diameter is taken to be a multiple {2.85) of the
Structural diameter. 1In the case of a grounded rubble pile, it would be
overconservative to consider that all this force is transmitted to the
foundation by the structure. On the other hand, the force transmitted to the
foundation by the structure woulgd decrease by a factor of 4.25 if both the
structure and the grounded rubble pile could transmit a force proportioﬁal to
the contact area of each with the foundatioﬁ. These results for a
transversely isotropic material-are identical to that from the isotropic

analysis in Ref. (Z), although the absolute value of the global force for the
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anisotropic case is greater than that for the isotropic case by a factor of
l.12.

Case 2 shows that §or 81 equal to 1 (isotropic) and 3, the two sets of
values for the material constants a and N lead to ice pressures for the roller
condition which differ by a factor of 1.19 and 1.30, respectively. However
for N=3 and the corresponding a, and B} varying between 1 and 5 (cases 1-3 and
10-14), global ice pressures vary by a factor of 1.10, 1.12, and 1.13 for the
fixed, roller and free conditions, respectively. This indicates that the
degree of anisotropy By is approximately two to three times less important
than the actual values of a and N.

Calibration with approximate solutions. In order to provide perspective

and calibration with solutions based on approximate methods of analysis, an
upper bound solution corresponding to the two-dimensional velocity field
postulated in Ref. (6) is obtained for a transversely isotropic power law
material. The kinematic model, obtained by superposing a uniform flow and a
doublet, resembles the flow of an infinite ice sheet past a circular indenter
with the interface matching most the roller condition. The approximate

formula may be expressed as given below:

4T N 4 12 (30)

P ’ v
— = e T8 T =

_ [ = 1/N
Dt Y3 N+3 'Y3 a

]

where P is the global force, V is the ice sheet velocity, and Tp is the
theoretically obtained ratio of global pressures for the anisotropic and

isotropic cases which is a function of only B3, i.e.,
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Bl {31)

r = T

P [(453-.1)/31l

Note that Fp=l under isgtropic conditions, i.e., B1=1, and that I‘p=(3/4)l/n as
B1+=. For 2.5¢N<4, this asymptotic value varies between 0.818-0.835. A
fraction equal to 98.5% of the asymptotic value is reached at By=5. The
factor © is used to modify the upper bound solution, which corresponds to a
plane strain condition as a result of the two-dimensional kinematic field
selected, in order to be able to apply it under plane stress conditions. As
discussed in Ref. (Z), Ponter et al.'s (3) analysis for both plane strain and
plane stress yields 0=0.5 for the isotropic case. On the other hand as B +e,
i.e., the material becomes infinitely strong transverse to the plane of
isotropy, the difference between the plane strain and plane stress conditions
disappears. Thus, the ratio of the global pressures at these two extremes of
anisotropy is egual to Ow(3/4)l/n/0.5, which for N=3 is 1.650, and for N=4 is
1.670=. Table 2 shows that case 11 with N=3 and B}=5 predicts the ratio of
global pressures to be 1.124 which suggests that 0n=0.69. The variation of ©
with By may be expressed as:

© = 0.69 ~ 0.19exp[-0.7(B3-1)) (32)
Table 2 shows that the predictions based on Egs. (30)-(32) differ from the
finite element solutions by less than 10%. The fixed condition is obtained by
multiplying Eq. (30) by 1.27, while the free condition uses a multiplying
factor of 0.5 (Table 3).

Local pressures. The maximum (peak) interface normal stress for each of

the 14 simulations is listed in Table 2. The table also lists the maximum
interface shear stress for the fixed cases. Notice that in all cases the

maximum normal pressure is approximately 0.36-1.16 times the global pressure.
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The maximum normal stress for the fixed condition is lower than that for
the roller condition by 16-23%, although a reverse trend is Observed for
global pressures. This-occurs because part of the force in the fixed
condition is carried by interface shear stress. On the other hand, the
maximum normal stress for the free condition is about 0-3% higher than that
tor the roller condition. This negligible increase occurs since the small
level of stresses that exist in the predominantly rigid continuum on the
downstream side for the free condition is transmitted t; the structure from
the upstream side. These results confirm the conclusion reached in Ref. (7)
that for local pressures the use of the free condition is conservative while
for global forces the fixed condition is conservative.

Comparison of the local and global pressures shows that the ratio of the
maximum normal interface stress to the global pressure is approximately 0.36
for the fixed condition, 0.56 for the roller condition, and 1.14 for the free
condition. Furthermore, the variation of locél pressures with V, D, a and N
is similar to that for global pressures. Thus multiplication of Eg. (30) by
0.46, 0.56 and 0.57 can be used to estimate the respective maximum normal
pPressures (Table 3). 1In a similar fashion, the méximum interface shear stress
for the fixed condition may be estimated from the equation with a
multiplication factor of 0.33.

For purposes of design it is necessary to consider not only the maximum
values of normal stress but also its distribution on the structure. Figure ¢
presents typicai normal stress dis}ributions corresponding-to 81=5, which
are very similar to the stress distributions for the isotropic case given in
Ref. (7). _The distributions are not affected, at least Visually, as VvV, D, N
and By are varied, although they have to be scaled according to the maximum
normal stresses in Table 2. & conservative design approach may be to assume a
uniform or rectangular distribution of stress based on the maximum normal

interface stress.
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Comparison with pressure-area curves. Pressure~area curves are often

constructed to help designers obtain the average pressures over tributary
loaded areas for structqral components (see for example Ref. (22)). A typical
curve developed by Sanderson (31) and discussed in Ref. (7) is shown in Fig.
5. The darkly shaded areas represent field and laboratory experimental data,
while the lightly shaded areas represent his extrapolation of the
measurements. The lower solid line is the local pressure under free interface
conditions predicteé by Eg. (30) assuming isotropy and N=3. The upper solid
line corresponds to an extreme level of anisotropy, i.e., B1=5. For contact
areas greater than 10 m2 where plane étress conditions exist, the two lines
differ by only a factor of 1.2. These predictions represent an excellent
match to measured local pressures. The theoretical predictions made here
assume knowledge of the ice sheet velocity just prior to "breakout" or
macrocracking. At higher velocities, fracture in ice will be the key
mechanism that limits the pressures.

Multiaxial behavior of ice sheet. Stress contours identifying the

compression-compression, compression-tension, and tension-tension regions in
the ice sheet are generally similar for both the isotropic and anisotropic
material models, i.e., (a) tensile stresses occur almost all over the ice
sheet, {(b) the compression~compression region on the upstream side, is much
smaller for the free condition than for the fixed condition, and (c) under
free interface conditions the relatively small downstream stresses are
predominantly £ension—tension. Figures 6 and 7 shoﬁ that increasing
anisotropy, i.e., By léads to increasing compréssion—compression and
tension—tengion regions. Experimental evidence for compression-tension states
of stress (ég) shows that the occurrence of even small tensile étresses
weakens ice considerably, leading to prémature fracture when compared with

uniaxial tensile loading.
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The strain fieléﬁ also are very similar for isotropic and anisotropic
material behavior (Fig. 8). The strains are smaller as 8 increases for the
roller and free conditions but remain almost unchanged for the fixed
condition. The reduction in strains is associated with the increase in
lateral confinement near the upstream and downstream tips of the indenter
which in turn significantly affects the behavior of transversely isotropic sea
ice. Lateral confinement effects are smaller for the fixed condition since
the influence of anisotropy is more evenly distributed over the interface due
to the presence of interface shear stresses. The peak values of these
stresses occur not at the tips but at points tangential to the direction of
the ice movement. The strains are compression-tension almost everywhere on
the ice sheet with tensile strains exceeding 0.001 at steady state. Since
tensile failure strain for sea ice is about 0.001 or less for strainrates
greater than 10-7 s~1 under just uniaxial loading, it seems likely that
cracking will occur even before steady state is reached.
CONCLUSIONS

This paper has (i) presented a general orthotropic elastic - power law
creep model for sea ice, and (ii) developed and applied a finite element
method of analysis to study the effect of sea ice anisotropy on indentation.in
the creeping mode. Numerical simulations of ice-structure interaction for a
rigid cylindrical indenter under plane stress conditions, a problem of general
interest for structural concepts in the Arctic, and a transversely isotropic
elastic - power law creep model fo; sea ice showed that:

1. Anisotropy, as represented'by the stress ratio 8; varying between 1
and 5, can pauge global forces to increase by almost 15 percent
depending upon whether the interface condition is fixed (infinite
adfreeze bond strength), roller, or free (no adfreeze bond strength
or interface friction). The factor is 1.10 for the fixed condition,

1.12 for the roller condition, and 1.13 for the free condition.
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2. Anisotropy” can cause maximum (peak) normal interface pressures to
increase by almost 20 percent depending upon the interface
condition. The factor is 1.07 for the fixed condition, 1.16 for the
roller condition, and 1.19 for the free condition. The interface
shear stress for the fixed condition essentially remains unchanged.

3. Finite element predictions of global forces and local pressures
differ from a (approximate) modified upper bound solution by less
than about 10% for varying velocity, indenter diameter, and material
constants,

4. Theoretical predictions of pressure-area curves provide an excellent
match to measured local pressures.

5. Anisotropy leads to an increase in the size of the compression-
compression and tension-tension states of stress on the upstream and
downstream sides, respectively, of the indenter.

6. Anisotropy leads to decreasing strains for the roller and free
conditions but to almost no change for the fixed condition. This is
associated with the increase in lateral confinement near the
upstream and downstream tips of the indenter which in turn
significantly affects the behavior of transversely isotropic sea
ice. Lateral confinement effects are smaller for the fixed
condition since the influence of anisotropy is more evenly
distributed over the interface due to the presence of interface
shear stresses. L

The numerical simulations also‘showed that (i) even a factor of two

uncertainty in velocity will affect ice pressures only by abou£ 20-30%, and
(ii) the uncertainties in pressures resulting from variability in the degree
of anisotropy is approximately th to three times less important than the

variability in the reference power law constants a and N.
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Further research is required to (a) predict the level of force that can
be directly transmitted to the foundation by a rubble pile, and (b) study the
influence of high confining pressures, temperature gradients, and fracture in

problems of ice-structure interaction.
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The anisotropy of sea ice strongly influences the macromechanical
behavior of first year sheet ice, while its influence on the bghavior of
multi-year floes, though l?ss well studied, may be less. 1In first vear sheet
ice, the first source of anisotropy leads to a ratio of vertical to horizontal
stress at constant strainrate varying from 2-5 (Butkovich, 1959, Peyton, 1966,
Vaudrey, 1977, Sinha, 1983a, and Frederking, 1983), while the second source of
anisotropy leads to stress ratios of 0.25-0.60 at a 45 degree azimuthal angle
to the c-axis and 0.50-0.95 at a 90 degree angle (Wang, 1979, Vittoratos,
1579, Richter-Menge, et al., 1985, Peyton, 1968).

Theoretical formulations which account for anisotropy in ice with a
transversely isotropic model have been developed by Reinicke and Ralston
{1877) and by Vivatrat and Chen (1985). The former model is based on
plasticity theory and considers ice to be a pressure sensitive material as
well. On the other hand, the latter is a pressure insensitive, elastic -
power law creep formulation.

The development presented here is based on an qrthotropic generalization
of the uniaxial, rate-sensitive damage model. Only the continuum (i.e.,
yielding) behavior of ice is sought to be modelled; not the fracture
{bounding) surface. This is unlike some models for ice that fail to
distinguish the phenomena of yielding and fracture. The fracture model for
ice is described in a separate paper (Ting and Shyam Sunder, in preparation).
As a result of this separation, a pressure insensitive model which predicts
similar behavior in compression and tension is studied in detail. Such a
model appears to be reasonable for sea ice as justified by experimental data.

Theoretical Formulation.-- The multiaxial generalization of Eg. (11l) may

be expressed in matrix notation as:

£=C0+ gy (23)
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NOMENCLATURE

parameter of power law model in reference direction

six parameters of orthotropic material model

constant equal to aj+a,

finite element transformation matrix

linear elastic orthotropic compliance matrix

indenter diameter

linear elastic orthotropic rigidity matrix

Young's modulus for transversely isotropic sea ice

transformation matrix relating S* to o

linear elastic stiffness matrix of finite element

linear elastic global stiffness matrix

constant equal to 2N/ (N+1)

power law exponent

global force on indenter

applied load vector

pseudo deviatoric stress vector for orthotropic material

thickness of ice sheet

time at instant i

nodal displacement vector

approach velocity of ice sheet

parameter in time integrator

five ratios of maximum stress along x, z and the 45° axes on the Y=z, X-y
and z-x planes, respectively, to the stress in the reference
y-direction

ratios of stresses or pressures under different conditions

total strain vector

Creep strain vector

effective strainrate measure

plane strain to plane stress conversion factor

associative flow rule constant .

Poisson's ratio for transversely isotropic sea ice

stress vector

effective stress measure

ratio of confining pressure to axial stress

scalar potential function

rate form is represented by a dot above the symbol
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TABLE 1 - SUMMARY OF CASES -

Velocity Diameter Interface
Case (ft/hr) (ft) N By Condition
1 0.64 350 3 3 Fixed
2 0.64 350 3 3 Roller
3 0.64 350 3 3 Free
4 0.10 350 3 3 Roller
5 1.00 350 3 3 Roller
6 0.64 1000 3 3 Roller
7 0.64 16.4 3 5 Free
8 0.64 328000 3 5 Free
g 0.64 350 4 3 Roller
10 0.64 350 3 5 Fixed
11 0.64 350 3 5 Roller
12 0.64 350 3 5 Free
13 0.64 350 3 2 Fixed
14 0.64 350 3 2 Free
Note: 1 ft = 0.3048 m

TABLE 2 - SUMMARY OF RESULTS

P/Dt (MPa) Maximum Interface Anisotropy/Isotropy
Normal Stress (MPa)
Maximum
Case Finite Finite Modified Global Interface
Element Modified Element Upper Pressure Normal
Analysis Upper Bound Analysis Bound Stress
1 2.41 2.62 0.87 0.95 1.08 1.06
2 1.98 2.06 1.10 1.15 1.12 1.12
3 0.99 1.03 1.13 1.17 1.11 1.15
4 1.03 1.11 0.58 0.62 ’ 1.10 1.12
5 2.33 2.39 1.29 1.34 1.15 1.15
6 1.33 1.45 0.74 0.81 1.08 1.09
7 2.96 3.37 - -
8 0.10 0.11 0.11 0.12 - -
9. 2.57 2.43 1.43 1.36 1.22 1.25
10 2.46 2.71 0.88 0.98 1.10 1.07
11 1.99 2.13 T ° 1.14 1.19 1.12 1.16
12 1.01 1.07 1.17 1.22 1.13 1.19
13 2.35 2.49 0.85 0.90 1.05 1.04
14 0.96 0.98 1.12 1.12 1.08 1.12

Note: The maximum interface shear stress for the fixed condition is 0.61 MPa
for B8y=3, 0.63 MPa for B;=5, and 0.60 Mpa for Bj;=2.
1 MPa = 145 psi




TABLE 3 -

MULTIPLYING FACTORS FOR APPROXIMATE MODEL (Eq. 30)

Condition Global Pressures Maximum Interface Normal Stress
Roller 1.00 0.56
Fixed 1.27 0.46
Free 0.50 0.57

Note: Factor for Maximum Interface Shear Stress in
Fixed Condition = 0.33
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A RATE-SENSITIVE DAMAGE MODEL FOR THE CONTINUUM BEHAVIOR OF SEA ICE
Seng-Kiong Ting and S. Shyam Sunder

Massachusetts Institute of Technology Department of Civil Engineering, Rm
1-274, Cambridge, MA 02139 (U.S.A.)

ABSTRACT

A rate-sensitive damage model is developed for describing the macroscale
continuum behavior of sea ice under variable loading conditions. This model,
based on a nonlinear generalization of the Maxwell differential model, is
characterized by its ability to (a) decompose the various recoverable and
irrecoverable components of strain, (b) represent continuously damaging or
strain-softening material behavior in the ductile to brittle transition
region, (c) capture the rate-dependent behavior of sea ice with
rate-independent model parameters, and {d) describe materially anisotropic
mechanical behavior. Further, the model shows strong dependency of the creep
and constant strainrate behavior. Calibration of the model is achieved with

several independent sets of data, particularly those for first-year sea ice.

1. INTRODUCTION

Ice in general, and columnar sea ice in particular, is a very complex
material which exhibits a wide range of behaviors often at the same time. As
a consequence of its occurrence at thermorheologically high temperatures, the
macroscale mechanical behavior of ice is strongly influenced by temperature
and rate of loading, in addition to elasticity, plasticity, damage, and
fracture. In many applications ice behaves predominantly as a continuum
undergoing deformation and a constitutive model which captures that behavior
is necessary to simulate the deformation process.

Shapiro (1978) has presented a four element nonlinear viscoelastic model

for sea ice which can be applied under general loading conditions. Under




constant strainrate tests, this model predicts an approximately linear
increase of strength with the logarithm of strainrate which appears to differ
from available test dataj Furthermore, this model cannot simulate the
post-peak decrease of stress due to material damage.

Sinha {1978, 1979, 1983b) has proposed a simple thermorheological model
to describe the uniaxial stress-strain-strainrate-temperature relationship for
columnar-grained ice. The model, consisting of eight parameters, accounts for
the instantaneous elastic, delayed elastic, and secondary creep components of
strain. According to the model, the delayed elastic strain under creep
loading conditions is directly proportional to the applied stress and grain
size while its value reaches a maximum asymptotically with time. Calibration
has been achieved with the extensive creep and constant stressrate tests
conducted on columnar-grained ice by him and the creep data of Brill and Camp
(1961).

Michel (1981) has proposed a similar model for ice based on dislocation
theory. The model, consisting of a network of linear springs and nonlinear
dashpots with ten parameters, has been applied under constant stress (creep)
and strainrate conditions. Unlike Sinha's model, this formulation shows a
peak followed by a stage of permanent creep at a lower stress. Calibration
with limited data from Brill and Camp (1961) and his own tests suggests the
need for adjustment of model parameters for each test case.

Wang (1982) has proposed a four parameter semi-empirical uniaxial model
for sea ice in compression. Under constant strainrate conditions, the model
displays a peak followed by a stage of permanent creep at a lower stress. The
model has not been extended to allow decomposition of the various strain
components. Furthermore, numerical problems associated with the mathematical

formulation can arise under certain conditions during constant stressrate and




creep loading. Calibration of the model has been performed with his constant
strainrate and stressrate tests and with the creep data contained in Mellor
(1980). :

Spring and Morland (1981, 1982, 1983) have investigated viscoelastic
fluid and solid relations of differential type as well as single integral
representations for the nonlinear viscoelastic deformation of ice. 1In the
fluid relation the constant stress and constant strainrate responses are
neizher completely independent nor completely dependent, so reflect some
common and some distinct properties. In the solid relation these two
responses are completely independent and, in fact, are ‘insufficient to

-determine the model without further reductions. Mellor (1980) conjectured
that the two types of response should be dependent, which is the familiar
linear result. Wwhile the differential fluid relation is closer to this
conjecture, it cannot model anisotropy and strain jumps. In both types it is
necessary to incorporate dependence of one or more response coefficients on
both stress and strainrate or strain respectively, and covering adequate
Stress-strainrate or stress-strain domains by practical test programs is
non-trivial. On the other hand, the single integral representation is
sensitive to kernel detail, which in turn is dependent on strainrate histroy.
Calibration of the formulations with experimental data has been very limited.

More recently, Karr (1984, 1985a, 1985b) has been investigating the use
of continuous damage models for describing the uniaxial behavior of ice.‘ His
four parameter model for sea ice displays a peak followed by a stage of
permanent creep at a lower stress and has been derived for constant strainrate
loading conditions. Eor creep loading, an empirical approach is used in
conjunction with the damage mechanics based stress-strain law for constant

strainrate loading. The constant stressrate case has not been studied, and



the methodology for”slrain decomposition under general loading conditions is
unclear.

This paper presents-a rate-sensitive damage model for describing the
macroscale continuum behavior of sea ice under variable loading conditions.
The model, based on a nonlinear generalization of the Maxwell differential
model, is characterized by its ability to (a) decompose the various
recoverable and irrecoverable components of strain, (b) represent continuously
damaging or strain-softening material behavior inithe ductile to brittle
transition region, (c) capture the rate-dependent behavior of sea ice with
rate-independent model parameters, and (d) describe materially anisotropic
mechanical behavior. Further, the model shows strong dependency of the creep

and constant strainrate behavior. Calibration of the model is achieved with

several independent sets of data, particularly those for first-year sea ice.

2, UNIAXIAL MODEL FORMULATION

The nonlinear generalization of the two element Maxwell fluid model
consists of an elastic spring in series with a viscous dashpot (Fig. 1). The
rate-sensitive spring represents recoverable strains and accounts for both
instantaneous elasticity and delayed elasticity or primary creep. The viscous
dashpot represents irrecoverable strains associated with nonlinear viscosity
Oor secondary creep. Both the rate-sensitive spring and the nonlinear viscous
dashpot are affected by material damage and as a result account for strain-
softening or tertiary creep. The mathematical formulation of the two Maxwell

elements is discussed in what follows.

Rate-Sensitive Elastic Spring.-- Most conventional materials are used at

thermorheologically low temperatures where their elastic properties are

relatively insensitive to rate of loading. The modulus of elasticity or




Young's modulus for such materials is obtained from tests conducted at
commonly encountered rates of loading and taken to be a constant. However, in
certain high loading rate applications, e.g., blast and impact, it is known
that the modulus of elasticity increases with rate. As a consequence of its
occurrence at thermorheologically high temperatures, the elastic modulus of
ice is sensitive to even "slight" variations in rate of loading (Mellor, 1983)
and cannot be taken as a constant. If the Young's modulus for ice, E, is
defined to be the modulus value at very high rates of loading, then the

variation of effective elastic modulus, Eeff, with rate may be expressed as:

Eeff = E[1 - r exp (-A/E e /Nj] (1)

where € is the strainrate, r and A are constants, and N is the power law index
for ice. Equation (1) shows that the effective modulus tends to the Young's
modulus as the strainrate approaches infinity. As the strainrate tends to
zero, the effective modulus tends to (I-r)E. If r is one the effective
modulus tends to zero, and if r is zero the effective modulus is
rate-insensitive and equal to the Young's modulus. A value of r less than one
is necessary to model stress relaxation, as explained later in this paper.

The rate-sensitive elastic spring represents recoverable strains

‘contributed both by instantaneous elasticity and by delayed elasticity. By

defining the total elastic strain to be the sum of the strains due to these
two components it is possible to model the rate~sensitive spring as the series
combination of two springs, one with modulus egual to E, i.e., the Young's
modulus, and the other with a modulus equal to Ej. It then follows that:

1/Eefg = 1/E + l/Ed , (2)
with:

Eg = E {1/r exp(A/E é1/N) - 1] {3)
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Equation (3) shows that the modulus of delayed elasticity tends to infinity at
infinite strainrate and to [(l-r)/rlE at zero strainrate. In the latter case,
the modulus tends to zero if r is one and to infinity if r is zero. Use of
Eq. (2) shows that when the modulus of delayed elasticity is infinity, the
effective modulus eguals the Young's modulus. When the modulus of delayed
elasticity is very small with respect to the Young's modulus, the effective
modulus equals the modulus of delayed elasticity. This occurs at low
strainrates. Research on the mechaﬁical behavior of materials at
thermorheologically high temperatures (Grant, 1971) has shown that delayed
elasticity associated with grain boundary sliding does lead to the behavior

predicted by this model.

Nonlinear Viscous Dashpot.-- The secondary creep strain, Egcs in most

materials including ice is assumed to follow the well known Glen's power law
(Glen, 1955). A generalization of that formulation adopted here is

mathematically expressed as:

o = [(A/M) ;l/N‘lJ € (4)
where A and N are the constants in Eg. (1), and M is a third constant.
Normally (A/M) is taken to be a single constant and ¢ equals g5. when modeling
steady state secondary cfeep, i.e., where primary and tertiary components of
Creep are absent. Since A is used to describe the primary creep strains, an
additional degree of freedom in the form of the constant M is necessary to
model secondary creep strains. The nonlinearity is associated with the

dashpot constant ¢/eg. which is a function of the total strainrate.

Continuous Damage Model.--In the transition from pure ductile to pure

brittle behavior under compressive loading ice behaves as continuum undergoing
damage. Under tensile loading the transition region is much smaller and a

continuum description of damage is of limited value. Damage in ice leads to
tertiary creep under constant stress loading and to strain-softening under




constant strainrate loading. Damage is almost nonexistant ;t very small
strain and strainrateé but increases as both strain and strainrate increase.
Further, unloading a damaged material generally shows a reduction in the
effective modulus of el§§ticity. Thus the phenomenon affects both the
rate-sensitive spring and the nonlinear viscous dashpot. The development here
is based on the hypothesis that this effect influences the constant A, which
appears in both the elements of the generalized Maxwell model. Defining D as
a one-dimensional damage parameter and Ap as the damaged value of the constant
A, it is possiblé to state that:

Ap = (1-D)A (5)
where D=0 in the case of no damage, and the A's in Egs. (1), (3), and (4) are
repléced with Ap. In general, D varies between zero and one. For the case of
total damage, i.e., D=1, the stress reduces to zero. This formulation is
unlike some others which model damage with "negative" springs that have little
physical appeal and can cause numerical problems, for example, in the form of
stresses with wrong sign. The following mathematical form describes the
dependence of the damage parameter on strain and strainrate, and satisfies the
physical constraints identified above.

bD=1- [exp(—cleé) + exp(fczé) {1 - exp(—clsé)}] (6)
where c) and c) are constants. This equation shows that as strainrate
approaches infinity D tends to one, i.e., the material is completely damaged.
Further, as strain approaches infinity D tends to [1 - exp(—czé)], i.e., there
is a limiting value of damage at any given strainrate. The repeated use of c3
in Eg. (6) is to ensure that D does not have a negative value.

Damage in a material is directly related to microcracking activity during
deformation. Gold (1960) cites a paper by E. Brown (1926) who noted the
presence of audible "crackling" of ice samples subject to compressive loads.

Brown associated the audible crackling with the development of cracks in ice.

He also noted that the crackling of the ice was related to the level of the




stress applied and the temperature at which the test was conducted. In his
own early research, Gold (1960) used a piezoelectric crystal frozen to the ice
sample to acoustically monitor the fractures which took place in the ice. 1In
his seminal paper more than a decade later, Gold (1972) reported the results
of an extensive study on the process of failure of columnar grained ice. He
developed statistics on cracking activity based on visual observations during
creep tests. His distribution of cracking activity followed an‘expression
similar to Eg. (6) with strain as the variable. Stress and temé;rature were
identified as additional variables that could affect cracking activity, but
they were found to have limited effect on hi§ test results. More recently,
Zaretsky et al. (1979) and St. Lawrence and Cole (1982) have studied in detail
the acoustic emissions from columnar—grained and fine-grained polycrystalline
ice, respectively. Observations from the above test programs lend additional
credibility to the general functional form of the proposed damage model.

The formulation of the damage parameter in Eg. {6) is appropriate under a
given monotonic loading condition. For a variable loading history the
evolution of the damage parameter is assumed to follow Miner's rule, i.e., the
incremental damage accumulation depends only on the current state of damage
and can be defined in terms of an equivalent strain at the instantaneous
strainrate.

Temperature Effects.-- At rates of loading where no material damage is

present in sea ice, the effect of temperature on the stress versus secondary
creep strain relationship is characterized by an Arrhenius activation energy
law. Mellor (1983) states that for temperatures greater than -10°C the law is
not valid and that the complete empirical relation derived from experiments
should be used to model the temperature dependence in such cases. Sinha

(1~78) has concluded that the variation of the delayed elastic or primary

creep strain with temperature also follows an Arrhenius law. He found the




activation energy for both the viscous flow and the delayed elastic deforma-
tion to be equal; Noting that the Young's modulus is relatively independent
of temperature, Sinha fognd that creep strains obtained at various
temperatures can be combined to give a master curve at some standard
temperature.

The parameter A, which appears in Egs. (1), (3), and (4), describes the
creep strains in ice and is taken to follow the Arrhenius activation energy
law to model temperature effects below -10°C, i.e.,

A = A, exp(Q/NRT) (7)
where T is the temperature in degrees Kelvin (0°C equals 273°K), A, is a
temperature independent constant, Q is the activation energy, and R is the
universal gas constant. As the temperature reduces, the parameter A increases
in value. 1In consequence, the effective elastic modulus tends to the Young's
modulus and the nonlinear dashpot becomes highly viscous. Then ice displays a

purely linear elastic material behavior with no rate or temperature

sensitivity. At the same time, the model predicts that no continuum damage

can occur in compression; this is realistic since at such temperatures ice
behaves as a brittle material for which the transition from an undamaged state

to a state with extensive macrocracking is almost instantaneous.

R. VARIABLE LOADING HISTORY SIMULATION

Governing Equations.—-- The rate-sensitive damage model for the continuum

behavior of sea ice assumes that the total strainrate is the sum of the
effective elastic strainrate and the nonlinear viscous strainrate, i.e.,

-

€ = U/Eeff + sSC. (8)

where €5~ can be expressed as uo with

p = (M/Ap) el/N-1 (9)




Alternatively, Eq. (8{ can be expressed as:

L . .

0 - Eggg (€ - Egc) (10)
Using Eq. {(2), Egs. (8) and (10) can be rewritten in terms of Young's modulus

and total creep strainrate, €., in the form given below.

. . .

= 0/E + €qp (11)
and
o = E(e ~ €5p) {12)
where

For an ideal creep test, the instantaneous stressrate at the time of
stress application is a Dirac delta function. It follows from Eg. (10) that
the instantaneous total strainrate is a delta function and from Eg. (1) that
the instantaneous effective modulus is equal to the Young's modulus. Further
for all time after application of the stress, the stressrate is zero.
According to Eg. (10) this is possible only if the total strainrate equals the
secondary creep strainrate for all time immediately after load application.
Thus according to the model, the ideal creep curve should exhibit no primary
creep strain. Tertiary creep strains may occur for large stresses as the
total strain increases.

The stress~strain~strainrate behavior for loading conditions other than’
ideal creep cannot be obtained analytically. A numerical solution algorithm,
applicable to constant strainrate, constant stressrate, and variable history

loadings, is presented in what follows.




Solution Algorithm.== An iterative solution algorithm is developed to
solve the nonlinear goverqing equation given in Eg. (12). At first the
governing equation is intégrated in time between tj and tj41 tO yield:

AG = E (b€ - bBecy) (14)
where A signifies the increment in the variables over the time increment
ti+1-ti- The incremental creep strain which appears in this eguation is
obtained from Eq. (13) with the o-method of numerical time integration, ie€e s

Aegr = AO/Eg * At My Oq ‘ (15)
where 0g is a weighted average of the stress over the specified time interval,
i.e..

gg = (l-a) 0 + @ Oi+1 (16)
and uq 1is derived from Eg. (9). A value of a greater than or egual to 0.5
results in an unconditionally stable, implicit algorithm. The well-known
trapezoidal rule and packward Euler method are obtained with a=0.5 and o=1,
respectively. The total strain required in the evaluation of Ap in EqQ. (9) is
also esiimated with the o—method. However, the total strainrate required in
the computation of Eg and Bp, i.e.. Ae/bt, is assumed to pe a constant over
the specified time interval and no weighting is necessary. This assumption is
reasonable for emall values of At.

For accelerating solution convergence in problems of interest dominated
by creep strains, a numerical algorithm which combines a Newton-Raphson oOr
tangent type nonlinear equation solver with the o—method is developed. The

resulting equations are listed below:

2Ae
(1 + E crik o Ko g+ E (be-bE Ky 4
30i+l Civl i cr
3Ae
cr, k k
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where Aecrk is obtained by applying Eg. (15) after obtaining the stress

quantities at iteration k, and similarly:

Fo=1% = /B, + At ot N (18)

For a constant strainrate or strain controlled test, Ae and 0j are known.
Iteration using Egs. (17) and (18) is necessary to obtain Oi+1 and Agqpr. 1In
the process of computing the incremental Creep strains, the primary, secondary
and tertiary creep components of strain can be identified. For a constant
stressrate or stress controlled test, Ac and €; are known. First, Eq. (14) is
applied to estimate Ae assuming becy is zero. Then iteration with Egs. (17)
and (18) yields Aecr and in general an incorrect value of Ao. Egquation (14)
is again applied with the correct value of Ag and the estimated Aecpr to update
Ag. Iteration is then performed with Egs. (17) and (18). This procedure is
repeated until the solution converges, i.e., the stress increment predicted by
Eq. (17) egquals the specified stress increment. Convergence of the iterations
in Eg. (17) is defined to occur when the absolute value of the relative change
in stress between iterations k and k+l is less than 0.01. Iteration is also
stopped if the actual stress is zero at k and its absolute value is less than
0.01 at k+l. Application of this iterative scheme with o=1 shows that conver-

gence is typically obtained in 4 iterations.

4. CALIBRATION WITH UNIAXIAL EXPERiMENTAL DATA

The uniaxial model is calibrated with several independent sets of(experi—
mental data obtained for example from constant strainrate, creep, and constant
stressrate tests. 1In addition, predictions of the model with respect to (a)

evolution of the damage parameter, (b} ratio of residual stress to peak stress
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versus strainrate, (c) stress relaxation, and (d) unloading and reloading are
also explored. This calibration is based on the following values for the nine
model parameters:

= 9,7 GPa

= 0.98

0.00652 Mpa sl/N
=3

= 1411.2

65,000 J mol~1l

= 8.314 J mol~1l k1
= 1.76x105 s

= 882 s

OO&U!O.’?-ZS""D’J
1 "

[N
1

For the particular ice type in one of the tests a different value of E equal
to 8.5 GPa and r=0.51 is necessary.

Experimental data on sea ice is limited in comparison to that on pure
ice. One way to enlarge the data base is to recognize that sea ice differs
from pure ice only in the respect that it contains brine. The salinity of sea
ice, 8, is typically 3-10 ppt (parts per thousand). The brine volume Vv is
related to the temperature (°C) and the gross salinity through a general
relationship derived by Frankenstein and Garner (1967) and contained in
Sanderson (1984) :

v =0.001 S (0.53 - 49.2/T) (19)
This equation breaks down for temperatures below -22.9°C and also if a signi-
ficant amount of pore volume is occupied by air bubbles/gas. Brine pockets
allow the ice to deform more easily and reduce the strength of the ice.
Geometrical considerations (Weeks and Assur, 1967), similar to those in soil
mechanics, show that for horizontal.loading of ice containing vertically
arranged cylindrical brine pockets the net section stress o' is:

o' = o/[1-(v/v5) /2] (20)
where o is the applied gross stress. The quantity v, corresponds physically

to the brine volume at which sea ice loses all strength. A value of Vo egqual

to 0.16 gives an optimum correction for a range of experimental observations




(Sanderson, 1984). Eqﬁations (19) and (20) as well as the Arrhenius law are

used to normalize sea ice stress data when necessary during calibration.

Constant Strainrate ?ests.-— The maximum stress (for convenience termed
strength in this paper) observed from three independent sets of constant
strainrate tests on pure columnar (S-2) ice is plotted in Fig. 2 versus
strainrate. Data for columnar sea ice is combined with the pure ice data and
plotted in Fig. 3. The data is widely scattered and ice strength may vary by
an order of magnitude at any given strainrate. Normalizing the experimental
data for temperature and salinity effects reduces the scatter by more than a
factor of two. Figure 4 contains this normalized data. The solid line in the
figure represents the prediction of the rate-sensitive damage model proposed
here; it is obvious that the model captures the overall trend of the data very
well. For strainrates greater than 1072 s~1 the continuum model of damage is
invalid and a horizontal line representing fracture is drawn at a stress of 5
MPa. The dashed line in the figure is the familiar power law model for
secondary creep in ice which fails to model material damage resulting in
strain-softening for strainrates between 2x10"4% s~1 and 1072 s~1,

Wang (1982) has conducted constant strainrate tests on columnar sea ice
in the nominal strainrate range 1076 s~1 to 1073 s—1, . Examples of
stress—strain curves observed by him are contained in Fig. 5, while those
generated by his semi-empirical model are shown in Fig. 6. Figure 7 plots
the predictions of the model proposed here up to a strainrate of 1072 s™1,
Comparison of the three figures shows that the proposed model is able to
capture the characteristics displayed by the experimental data. Further, the
model correctly prediqts the observed lowering of residual stress at higher

strainrates as a result of strain-softening.




Creep Tests.-- Experimental limitations preclude the possibility of

conducting an ideal creep test. In most cases a finite time eguivalent to a
few seconds is necessary. to develop the nominal creep stress. This finite
rise time effect may be modelled in general with a time-varying stress given

by:

o(t) = o, fl - exp(~atb)] (21)

where op is the nominal creep stress, and a,b are constants. The rise time,

ty, is defined as the time required to reach 99% of the nominal creep stress.
Given the rise time and b=l, the parameter a may be evaluated with:

a = - &n O.O;/tr (22)

Figure 8 presents the creep test data observed by Sinha (1978) at é
stress of 0.49 MPa and temperatures of -41°C, -30°C, and -19.8°C,
respectively. The predictions of creep strains and creep strain recovery
associated with unloading for the model proposed here and that of Sinha (1978)
are shown by the solid lines. The rise times as well as the finite times for
unloading are indicated on the figures. 1In general the proposed model is able
to describe the observed data as well if not better than Sinha's model. The
tests at -30°C yield creep and recovery curves that are significantly variable
undgr the same nominal conditions, suggesting that most of the variability
assoéiated with the model predictions may be linked to this factor, i.e.,
difficulty in conducting repeatable creep tests. By changing the finite rise
time from 1. to 2.4 seconds the proposed model is able to capture some of the
variability, the remainder is the gncertainty in the finite rise time model
and othér experimentél uncertainties not accounted for. It is also possible
that some of the wvariability may be due to model uncertainty.

Figure 9 shows the experimental creep data of Brill and Camp (1960) for

randomly oriented snow ice together with the predictions of the current model




and the model of Sinh& (1978). Two of the curves correspond to tests at -5°(C
and one to -10°C. It must be reiterated that the Arrhenius law loses validity
at -3°C. The proposed model captures the overall data trend at -10°C and for
the 0.232 MPa stress case at -5°C. The prediction is poor at -5°C for the
0.125 MPa stress case. Sinha's model however appears to fit the data quite
well; to some extent this is made possible by the variation of grain size, a
parameter which directly influences his formulation of the primary creep
component of strain.

Wang (1982) has generated creep curves using his semi-empirical model for
sea ice as shown in Fig. 10. He found the curves to agree with experimental
Observations contained in Mellor (1980). Creep curves generated by the model
proposed here are shown in Fig. 1l1. The proposed model provides good
agreement with the curves of Wang.

Constant Stressrate Tests.-- Experimental data obtained during constant

stressrate tests is limited. Figqure 12 contains the "strength" versus
stressrate data for sea ice obtained from two independent sources. The data
normalized for temperature and salinity effects is plotted in Fig. 13. The
solid line in the figure is the prediction of the proposed model. For
stressrates greater than about 0. - MPa/s, a strainrate of 10'2 s-1 jg reached
prior to reaching the maximum stress. If the stress is greater than 5 MPa,
the fracture stress at this strainrate, the material is assumed to have
fractured and the maximum stress just prior to fracture is considered to be
the strength. For stressrates greater than about 0.1 MPa/s the model captures
the observed behavior quite well. For lower stressrates, the model over
predicts the strength. A careful study of the stress-strain curves (see Fig.
14) shows that while they appear to reach their maximum asymptotic values at

strain values of 1-5%, in fact the stress keeps increasing further. It is




therefore possible that experimental observations are made prematurely and as
such do not reflect the actual "strength". On the other hand, it is also
possible that the model predictions are unrealistic. Further research is
necessary to explain this discrepancy.

The stress-strain curves predicted by the semi-empirical model of Wang
(1982) under constant stressrate conditions are shown in Fig. 15. Beyond a
certain strain value the solution ceases to exist. The predictions were found
to agree reasonably well with his earlier ;est results (Wang, 1979). The
curves predicted by the model proposed here and shown in Fig. 14 are in good

agreement with Wang's curves.

Effective Elastic Modulus.-- Data on the strainrate variation of the

effective elastic modulus is plentiful (see Mellor, 1983). The experimental
data of Traetteberg, Gold, and Frederking (1975) on pure columnar-grained ice
at -10°C is presented in Fig. 16. Predictions of the effective elastic
modulus based on the proposed model is indicated by the solid line, which
suggests an excellent match with the observed data.

Other Model Characteristics.-- The evolution of the damage parameter D

with strain and strainrate is shown in Fig. 17 for a range of strainrates and
strains up to 1%. For lower strainrates the accumulation of material damage
is small and not of significance in modeling the behavior of sea ice. The
figure also shows how damage evolves under a variable history loading.

The ratio of residual stress to peak stress ("strength") is plotted
versus strainrate in Fig. 18. There is an almost exponential decay of the
ratio, and the value tends to zero as strainrate approaches 1072 s~1,

The test in which a suddenly applied constant stress is followed by a
condition in which the strain is kept constant often results in a stress

reduction. This phenomenon is termed stress relaxation. Figure 19 shows the

stress relaxation for the proposed model during a creep test conducted at 3




MPa. The amount of rélaxation is dictated by the numerical value of the
parameter r. If r=1 the effective modulus equals zefo, Eq. (10) predicts the
stressrate to be zero, and thus no stress relaxation is possible. A value of
r less than one is necessary to model this phenomenon.

The simulation of unloading and reloading requires specification of how
the unloading or reloading is to take place. In a constant strainrate test,
unloading could imply a change in the sign of the constant strainrate or
simply the setting of stress equal to zero. Reloading may be defined in
similar terms. Figure ” a shows unloading and reloading based on controlling
strainrate, while in Fig. 20b unloading is stress controlled while reloading
is strainrate controlled. 1In both cases, the model follows the virgin loading
curve once the effect of the unloading/reloading ends. Figure 20c represents a
sinusoidal variation of stre§§“5€€ween zero and a prescribed maximum value.
Experimental data of Mellor and Cole (1981) suggests that hysteresis loops
should be obtained for such tests. The present model will have to be extended

to capture this phenomenon.

5. MULTIAXIAL MODEL FORMULATION AND CALIBRATION

Sea ice is not an isotropic material. Field observations have shown that
this type of ice, which is predominantly columnar, has two sources of
anisotropy: (a) the c-axis is oriented perpendicular to the axis of crystal
growth, and (b) the c-axes of different crystals may show preferred azimdthal
orientation in the plane on which they lie. There is strong evidence
suggesting that the preferred azimuthal orientation is correlated with the
instantaneous current direction just underneath a growing ice sheet (Weeks and
Gow, 1978, Langhorne, '1982, and Langhorne, 1983). While such alignments are
common in landfast ice, observations suggest that strong alignments can

develop in pack ice when there is little rotation of the floes relative to the
current direction (Cherepanov, 1971, and Kovacs and Morey, 1980).




where C is the linear.elastic compliance matrix for an orthotropic material.

(see Appendix A), and the remaining vectors are in general of size (6x1) in

engineering notation.
To derive the relationship between the creep strainrate and stress

vectors, first an effective stress measure generalized for orthotropic

materials with identical behavior in compression and tension is defined.

n a 2 4 2 a5 2
% = /81 3 (oxx - yy) 3 (Uyy T 92z * 3 (Gzz T %x
2 2 2
+
+ 2a4 ny 2a5 oyz + 2a6 ozx] (24)

with B=aj;+aj;. This may be expressed in compact form using matrix notation as:

Oe 2= 3/8 _T Gago (25)
where G is the matrix defined in Appendix A.

The creep strainrate vector can now be related to the stress vector by

defining a scalar potential function ¢ which obeys the associated flow rule,

i.e.,

: . 8¢

Ecr - a0 (26)
with

Ueae cz

$ = E e (27)

Combining Egs. (25)-(27) yields the desired relationship:
. (28)

Ecr = A S*



(29)

where
o
A= 3/8 2 { <5 uo ]
] E
e d
and

(30)
It may be

s =¢g
Note that S5* is not the conventional deviatoric stress vector.
thought of as a pseudo deviatoric stress vector for an anisotropic material.

The evaluation of p and E3y above requires knowledge of the effective

creep strainrate €g,oy which can be expressed as:
B/3 T H ¢ (31)

Eerer =
where g‘is the matrix defined in Appendix A.
the pseudo deviatoric stresses may be obtained

in succession leads to

Given the stress vector,
and (28)

Then applying Egs. (25), (29),
Note that if a; - ag = 1,

from Eg. (30).
the creep strainrate vector. these equations
predict isotropic material behavior.
Estimation of Multiaxial Model Parameters.—- Five uniaxial (compression)

tests at constant strainrate are necessary to obtain the five orthotropic
Note that (i) a; can be set equal to one without

model parameters: aj-ag.
(ii) there is experimental evidence which shows that

loss of generality, and
the power law exponent N can be considered independent of the direction of
it is assumed that the

loading. For purposes of the current derivation,
c-axes of the sea ice crystals lie on the y-z plane and that they are aligned
This implies that the x~axis represents the

in the y-direction (Fig. 22).

crystal growth direction.
The tests can be conducted in the three orthogonal directions vy, x, and z

respectively, and along the three 45° axes on the y-z, x-y, and z-x planes
It is assumed that the uniaxial model discussed earlier refers

respectively.



to the y-direction. Then, let Bj;-Bg represent the experimentally determined
ratios of the maximum stresses for the latter five tests, respectively, to the
maximum stress in the reference y-direction at the same strainrate. The

orthotropic model parameters may be determined from the following equations:

n n n
81 - 82 (l~81)
a2 T n n n (32)
Bl - 82 (l+81)
n n n
Bl + 82 (1 81)
a3 = - n n n (33)
Bl - 82 (l'Bl)
a = Bpagh - g™ (34)
4 6 4 2
a. = B oragh - g "M (3.=:>
5 6 3 1
_ B -n _
a6 = 7z [485 1] (36)

where n=2N/(N+1). Typical ranges for the B;'s (identified in the previous
subsection) are 2-5 for B3, 0.50-0.95 for By, and 0.25-0.60 for B83. Values
for B4 and Bg are not generally available in the literature. Since these two
parameters determine only the out of plane shear strains and stresses in sheet
ice, they have no influence on plane strain and plane stress probléms.
However, the parameters will have to be obtained in the case of
three-dimensional boundary value problems.

For a transversely isotropic material, i.e., isotropy in the y—-z plane,
Bo,=B83=1 and B4=B5. As a result aj=a3=1, ag=ag, the parameters ap and ag are

functions of only Bj, while a, depends on both By and B4. oOnly two uniaxial

tests are required to obtain By and By; one in the x-direction and one along

the 45° axis on the x-y or z-x planes.



Frederking (1977) has conducted plane strain uniaxial compression tests
on columnar-grained transversely isotropic freshwater ice. For his type A
tests, strains in the z—difection are constrained to zero and stresses are
applied in the y-direction. The ratio T of the plane strain stress to the
unconfined stress at the same strainrate is directly related to By by the

following equation:

r = [ —————1 (37)

The equation predicts T, to vary between 2.1-5.1 for experimentally observed
values of Bj ranging from 2 to 5, and N between 3 and 4. This is consistent
with Frederking's experimental observations of T, which were close to 2 at
high strainrates and to 5 at low strainrates. In the type B tests, strains in
the x-direction are constrained to zero while stresses are again applied in

the y-direction. In this case, the stress ratio Ty is given by:

) 1/n (38)

Since Bj is generally greater than one, Ty will be less than approximately 1.2
for N between 3 and 4. For typical values of B7. the predicted values of Ty
range from 1.01 to 1.06. This is consistent with Frederking's experiments
which showed negligible influence of x-direction confinement on stresses.

Triaxial tests of first-year sea ice have been conducted by
Richter-Menge, Cox et al. (1985) on samples obtained from horizontal cores in
the plane of the ice sheet at angles of 0°, 90°, and 45° to the preferred

c-axis orientation. According to the orthotropic material model, the ratio T¢



of the maximum axial stress with a confining pressure egual to T times the
axial stress to the maximum stress in the unconfined state at the same

strainrate should be given by:

_ 1
Iy = 1=

(39)

The deviatoric stress (i.e., axial stress minus radial stress) normalized by
the unconfined stress is independent of t or confining pressure for the model
and equal to one. ‘Experimental data for this quantity is plotted versus
confining pressure in Fig. 23, which shows that the sea ice data is only
moderately pressure sensitive. Thus the use of a pressure insensitive model
appears to be justified for sea ice. The figure also includes data obtained
by Hausler (1951) on columnar-grained saline ice at a strainrate of 2x1074 s—1
using a so-called "rrue" triaxial testing machine.

No general conclusions can be drawn as yet concerning the pressure
insensitivity of sea ice since the results of Panov and Fokeev (1977) for
natural and artifical sea ice seem to indicate an appreciable increase in
deviatoric stress with confining pressure. However their tests were carried
to the "breaking point"™ of ice, and as such the data represents the fracture
surface and not the yield surface prior to fracture. On the other hand, the
triaxial behavior of pure (non~saline) polycrystalline ice has been studied by
Jones {1978) and Durham et al. (1982). The tests by Jones performed at
strainrates of 1078 to 5x10-3 s~1 indicate up to a factor of two increase in
deviatoric stress due to confining pressure. Durham et al.'s tests were con-
ducted at temperatures of -78°C to -196°C where ice is expected to behave more
as a brittle material and to very high pressures (up to 350 Mpa). Very high
yield stresses were recorded, and phase transitions to higher density
polymorphs were reached. Both these sets of data for pure 1lce have limited

applicability for calibration of sea ice models since no equivalence in the



triaxial behavior of pufre and sea ice has been established. It must be néted
that the plasticity based pressure sensitive parabolic yield function of
Reinicke and Ralston (1977) has been justified with the help of Frederking's
(1977) data (which has been shown in this paper to follow a pressure
insensitive model very well) and that the three parameter extension of their
yvield function by Reinicke and Remer (1987) has been justified on the basis of

Jones' triaxial data for pure polycrystalline ice.

6. CONCLUSIONS

This paper has presented a rate-sensitive damage model for describing the
continuum behavior of sea ice under variable loading conditions. The model,
based on a nonlinear generalization of the Maxwell differential formulation,
is characterized by its ability to (a) decompose the various recoverable and
irrecoverable components of strain, (b) represent continuously damaging or
strain-softening material behavior in the ductile to brittle transition
region, (c¢) capture the rate-dependent behavior of sea ice with
rate-independent model parameters, and (d) describe materially anisotropic
mechanical behavior. Further, the model shows strong dependency of the creep
and constant strainrate behavior. Calibration of the model is achieved with
several independent sets of data, particularly those for first-year sea ice.
The following specific conclusions can be drawn from the work reported in this
paper:

1. The uniaxial model developed here is described by 9 parameters. For
comparable models, i.e., those of Sinha and Michel, the number of parameters
is 8 and 10 respectively. It hust be recognized that Sinha's model does not
capture material damage while calibration of Michel's model with experimental
data has been very.limiped.

2. All parameters of the proposed model, i.e., 9 for the uniaxial model
and 5 for the orthotropic generalization, can be determined from conventional



tests conducted on ice.- The experimental data base is generally adequate to
determine the model parameters. In particular, normalization of the uniaxial
strength data for salinity and temperature is a useful way of including test
results for pure polycryst;lline ice in model calibration.

3. Material damage that can be described by the continuum model proposed
here is significant in the strainrate range of 2x10~4 s™1 to 10-2 s~1, at
higher strainrates the presence of macrocracks precludes a solely continuum
description of ice behavior.

‘e According to the proposed model, an ideal creep test does not lead to
primary creep strains. However if the finite rise time required to reach the
nominal stress in a creep test is taken into account, primary creep strains
are simulated by the model. Experimental evidence appears to support this
conclusion.

5. The pressure-insensitive orthotropic model proposed here predicts very
well the plane strain uniaxial compression tests conducted by Frederking.
Further, experimental data of Richter-Menge et al. on first-year sea ice and
that of Hausler on saline ice indicate that sea ice is only moderately
pressure sensitive in comparison with pure ploycrystalline ice which is highly
pressure—sensitive.

Additional research is needed to resolve several questions; including (a)
the presence or lack thereof of primary creep strains in ideal creep tests,
(b) the adequacy of the incremental damage accumulation model based on Miner's
rule particularly for variable histoEy loading, (c) the generation of
hysteresis loops during unloading/reloading and cyclic loading, (d) the
presence or lack thereof of a peak stress in tests conducted at low
stressrates (i.e., lowe? than 0.1 MPa/s), (e) the extent of stress relaxation
in sea ice, and (f) eguivalence, if any, in the triaxial behavior of pure and

sea ice. Both experimental and theoretical research is very much needed to



better characterize thé multiaxial behavior of sea ice particularly under

cyclic loading.
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